論文の概要: Comparative Study of Neighbor-based Methods for Local Outlier Detection
- arxiv url: http://arxiv.org/abs/2405.19247v1
- Date: Wed, 29 May 2024 16:28:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:12:12.391549
- Title: Comparative Study of Neighbor-based Methods for Local Outlier Detection
- Title(参考訳): 局所外乱検出における近隣手法の比較検討
- Authors: Zhuang Qi, Junlin Zhang, Xiaming Chen, Xin Qi,
- Abstract要約: 本稿では,既存の外乱検出アルゴリズムの隣人について検討し,情報・隣人・方法論の3レベル成分を用いてハイブリッド手法を定義した分類法を提案する。
その結果, 高次元空間での作業には, 逆K-アレスト近傍法が有望な性能を実現し, 動的選択法が適していることが示唆された。
- 参考スコア(独自算出の注目度): 4.556974104115929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The neighbor-based method has become a powerful tool to handle the outlier detection problem, which aims to infer the abnormal degree of the sample based on the compactness of the sample and its neighbors. However, the existing methods commonly focus on designing different processes to locate outliers in the dataset, while the contributions of different types neighbors to outlier detection has not been well discussed. To this end, this paper studies the neighbor in the existing outlier detection algorithms and a taxonomy is introduced, which uses the three-level components of information, neighbor and methodology to define hybrid methods. This taxonomy can serve as a paradigm where a novel neighbor-based outlier detection method can be proposed by combining different components in this taxonomy. A large number of comparative experiments were conducted on synthetic and real-world datasets in terms of performance comparison and case study, and the results show that reverse K-nearest neighbor based methods achieve promising performance and dynamic selection method is suitable for working in high-dimensional space. Notably, it is verified that rationally selecting components from this taxonomy may create an algorithms superior to existing methods.
- Abstract(参考訳): この手法は, サンプルとその近傍のコンパクト性に基づいて, サンプルの異常度を推定することを目的として, 異常度検出問題に対処する強力なツールとなっている。
しかしながら、既存の手法では、データセットの外れ値を見つけるために異なるプロセスの設計に重点を置いているのが一般的であるが、異なるタイプの隣人のオフ値検出への貢献については、十分に議論されていない。
そこで本研究では,情報・隣人・方法論の3レベル構成をハイブリッド手法の定義に用い,既存の異常検出アルゴリズムと分類法を導入する。
この分類学は、この分類学の異なる構成要素を組み合わせることで、近隣の新規なアウトリーチ検出法を提案するパラダイムとして機能することができる。
性能比較とケーススタディの観点から, 合成データセットと実世界のデータセットの比較実験を多数行った結果, 逆K-アネレスト近傍法は有望な性能を実現し, 動的選択法は高次元空間での作業に適していることが示された。
特に、この分類学から部品を合理的に選択することは、既存の手法よりも優れたアルゴリズムを生み出す可能性があることが検証されている。
関連論文リスト
- Retrieval-Augmented Classification with Decoupled Representation [31.662843145399044]
そこで本研究では,KNN(Kk$-nearest-neighbor)に基づく拡張分類検索手法を提案する。
分類と検索の共有表現がパフォーマンスを損なうことや,トレーニングの不安定化につながることが判明した。
本手法は,幅広い分類データセットを用いて評価する。
論文 参考訳(メタデータ) (2023-03-23T06:33:06Z) - Multivariate feature ranking of gene expression data [62.997667081978825]
ペアワイズ相関とペアワイズ整合性に基づく2つの新しい多変量特徴ランキング手法を提案する。
提案手法は, クラスタリング変動, チ・スクエアド, 相関, 情報ゲイン, ReliefF および Significance の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-11-03T17:19:53Z) - Adaptive Sampling for Heterogeneous Rank Aggregation from Noisy Pairwise
Comparisons [85.5955376526419]
ランキングアグリゲーション問題では、各項目を比較する際に、様々な精度レベルが示される。
本稿では,ノイズのあるペアワイズ比較によってアイテムのランクを推定する,除去に基づくアクティブサンプリング戦略を提案する。
提案アルゴリズムは,商品の真のランキングを高い確率で返却できることを示す。
論文 参考訳(メタデータ) (2021-10-08T13:51:55Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - How to Design Robust Algorithms using Noisy Comparison Oracle [12.353002222958605]
メトリクスに基づく比較操作は、様々なクラスタリング技術の研究に基本的である。
本稿では,最接近探索,最接近探索,最接近探索など様々な問題について検討する。
k中心クラスタリングと凝集階層クラスタリングのためのロバストなアルゴリズムを提供する。
論文 参考訳(メタデータ) (2021-05-12T16:58:09Z) - Adversarial Examples for $k$-Nearest Neighbor Classifiers Based on
Higher-Order Voronoi Diagrams [69.4411417775822]
逆例は機械学習モデルにおいて広く研究されている現象である。
そこで本研究では,$k$-nearest 近傍分類の逆ロバスト性を評価するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-19T08:49:10Z) - A Weighted Mutual k-Nearest Neighbour for Classification Mining [4.538870924201896]
kNNは非常に効果的なインスタンスベースの学習方法であり、実装が容易です。
本稿では,データセットから疑似近傍の異常検出と除去を行う新しい学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-14T18:11:30Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z) - A flexible outlier detector based on a topology given by graph
communities [0.0]
異常検出は機械学習手法と統計的予測モデルの最適性能に不可欠である。
トポロジーは、特徴空間内の互いに隣接する近傍を成す重み付きグラフのコミュニティを用いて計算される。
当社のアプローチは、ローカル戦略とグローバル戦略の両方において、複数のビュー設定と単一ビュー設定で総合的に優れています。
論文 参考訳(メタデータ) (2020-02-18T18:40:31Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。