論文の概要: MASSIVE Multilingual Abstract Meaning Representation: A Dataset and Baselines for Hallucination Detection
- arxiv url: http://arxiv.org/abs/2405.19285v1
- Date: Wed, 29 May 2024 17:17:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:02:26.474252
- Title: MASSIVE Multilingual Abstract Meaning Representation: A Dataset and Baselines for Hallucination Detection
- Title(参考訳): MASSIVE Multilingual Abstract Meaning Representation: 幻覚検出のためのデータセットとベースライン
- Authors: Michael Regan, Shira Wein, George Baker, Emilio Monti,
- Abstract要約: 84,000以上のテキスト・ツー・グラフアノテーションを持つデータセットであるMASSIVE-AMRを紹介する。
AMRグラフは、50以上の言語にマッピングされた1,685の情報検索発話を示す。
その結果、構造化解析のためのLLMを用いた永続的な問題に光を当てた。
- 参考スコア(独自算出の注目度): 3.6811136816751513
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Abstract Meaning Representation (AMR) is a semantic formalism that captures the core meaning of an utterance. There has been substantial work developing AMR corpora in English and more recently across languages, though the limited size of existing datasets and the cost of collecting more annotations are prohibitive. With both engineering and scientific questions in mind, we introduce MASSIVE-AMR, a dataset with more than 84,000 text-to-graph annotations, currently the largest and most diverse of its kind: AMR graphs for 1,685 information-seeking utterances mapped to 50+ typologically diverse languages. We describe how we built our resource and its unique features before reporting on experiments using large language models for multilingual AMR and SPARQL parsing as well as applying AMRs for hallucination detection in the context of knowledge base question answering, with results shedding light on persistent issues using LLMs for structured parsing.
- Abstract(参考訳): 抽象的意味表現(英:Abstract Meaning Representation, AMR)は、発話の中核的な意味を捉える意味形式である。
既存のデータセットのサイズやアノテーションの収集コストが制限されているにも関わらず、AMRコーパスは英語で開発され、最近では言語で開発されている。
工学と科学の両方を念頭に置いて,84,000以上のテキスト・ツー・グラフアノテーションを持つデータセットであるMASSIVE-AMRを紹介した。
我々は,多言語AMRとSPARQL解析のための大規模言語モデルを用いた実験や,知識ベース質問応答の文脈における幻覚検出にAMRを適用し,構造化解析にLLMを用いた永続的な問題に光を当てる前に,我々のリソースとその特徴をいかに構築したかを説明する。
関連論文リスト
- FASSILA: A Corpus for Algerian Dialect Fake News Detection and Sentiment Analysis [0.0]
アルジェ方言(AD)は、注釈付きコーパスがないため、課題に直面している。
本研究では,Fake News(FN)検出・感情分析(SA)のための専門コーパスの開発プロセスについて概説する。
論文 参考訳(メタデータ) (2024-11-07T10:39:10Z) - Analyzing the Role of Semantic Representations in the Era of Large Language Models [104.18157036880287]
大規模言語モデル(LLM)の時代における意味表現の役割について検討する。
本稿では, AMRCoT と呼ばれる AMR-driven chain-of- Thought prompting 法を提案する。
AMRのどの入力例が役に立つかは予測できないが,複数単語の表現でエラーが発生する傾向にある。
論文 参考訳(メタデータ) (2024-05-02T17:32:59Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - "You Are An Expert Linguistic Annotator": Limits of LLMs as Analyzers of
Abstract Meaning Representation [60.863629647985526]
文意味構造の解析において, GPT-3, ChatGPT, および GPT-4 モデルの成功と限界について検討した。
モデルはAMRの基本形式を確実に再現でき、しばしばコアイベント、引数、修飾子構造をキャプチャできる。
全体としては,これらのモデルではセマンティック構造の側面を捉えることができるが,完全に正確なセマンティック解析や解析をサポートする能力には重要な制限が残されている。
論文 参考訳(メタデータ) (2023-10-26T21:47:59Z) - Retrofitting Multilingual Sentence Embeddings with Abstract Meaning
Representation [70.58243648754507]
抽象的意味表現(AMR)を用いた既存の多言語文の埋め込みを改善する新しい手法を提案する。
原文入力と比較すると、AMRは文の中核概念と関係を明確かつ曖昧に表す構造的意味表現である。
実験結果から,多言語文をAMRで埋め込むと,意味的類似性と伝達タスクの両方において,最先端の性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-10-18T11:37:36Z) - A Simple and Effective Method To Eliminate the Self Language Bias in
Multilingual Representations [7.571549274473274]
言語に依存しない意味言語情報の分離は、多言語表現モデルのための新たな研究方向である。
言語情報除去(LIR)は,多言語データに基づいて事前学習した多言語表現における意味関連コンポーネントから言語識別情報を抽出する。
LIRは、弱アライメント多言語システムでは、意味空間の主成分が言語アイデンティティ情報をエンコードしていることを明らかにする。
論文 参考訳(メタデータ) (2021-09-10T08:15:37Z) - Translate, then Parse! A strong baseline for Cross-Lingual AMR Parsing [10.495114898741205]
我々は,各言語からの文をAMRに投影し,それらの意味的構造を捉えるモデルを開発した。
本稿では,単純な2ステップベースラインを再検討し,強力なNMTシステムと強力なAMRで拡張する。
実験の結果,T+Pはすべてのテスト言語で最新の最先端システムより優れていることがわかった。
論文 参考訳(メタデータ) (2021-06-08T17:52:48Z) - DiS-ReX: A Multilingual Dataset for Distantly Supervised Relation
Extraction [15.649929244635269]
これらの問題を緩和する新しいデータセットであるDiS-ReXを提案する。
私たちのデータセットには150万以上の文があり、36の関連クラスを持つ4つの言語にまたがっている。
また,mBERTを用いて文を符号化し,多言語DS-REのベンチマーク結果を提供する。
論文 参考訳(メタデータ) (2021-04-17T22:44:38Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Room-Across-Room: Multilingual Vision-and-Language Navigation with Dense
Spatiotemporal Grounding [75.03682706791389]
新しいビジョン・アンド・ランゲージ・ナビゲーション(VLN)データセットであるRoom-Across-Room(RxR)を紹介する。
RxRは多言語(英語、ヒンディー語、テルグ語)で、他のVLNデータセットよりも大きい(パスと命令がより多い)。
これはVLNにおける言語の役割を強調し、パスにおける既知のバイアスに対処し、可視化されたエンティティへのより多くの参照を引き出す。
論文 参考訳(メタデータ) (2020-10-15T18:01:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。