論文の概要: How Do Multilingual Language Models Remember Facts?
- arxiv url: http://arxiv.org/abs/2410.14387v2
- Date: Sat, 15 Feb 2025 18:22:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:05:18.694999
- Title: How Do Multilingual Language Models Remember Facts?
- Title(参考訳): マルチ言語モデルはどのようにしてファクトを思い出すか?
- Authors: Constanza Fierro, Negar Foroutan, Desmond Elliott, Anders Søgaard,
- Abstract要約: これまでに同定された英語のリコール機構が多言語文脈に適用可能であることを示す。
我々は、リコール中の言語の役割をローカライズし、エンリッチメントが言語に依存しないことを発見した。
デコーダのみのLLMでは、FVは2つの異なる段階でこれらの2つの情報を構成する。
- 参考スコア(独自算出の注目度): 50.13632788453612
- License:
- Abstract: Large Language Models (LLMs) store and retrieve vast amounts of factual knowledge acquired during pre-training. Prior research has localized and identified mechanisms behind knowledge recall; however, it has only focused on English monolingual models. The question of how these mechanisms generalize to non-English languages and multilingual LLMs remains unexplored. In this paper, we address this gap by conducting a comprehensive analysis of three multilingual LLMs. First, we show that previously identified recall mechanisms in English largely apply to multilingual contexts, with nuances based on language and architecture. Next, through patching intermediate representations, we localize the role of language during recall, finding that subject enrichment is language-independent, while object extraction is language-dependent. Additionally, we discover that the last token representation acts as a Function Vector (FV), encoding both the language of the query and the content to be extracted from the subject. Furthermore, in decoder-only LLMs, FVs compose these two pieces of information in two separate stages. These insights reveal unique mechanisms in multilingual LLMs for recalling information, highlighting the need for new methodologies--such as knowledge evaluation, fact editing, and knowledge acquisition--that are specifically tailored for multilingual LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、事前訓練中に取得した膨大な事実知識を格納し、取得する。
これまでの研究では、知識リコールの背後にあるメカニズムをローカライズし、特定してきたが、英語の単言語モデルにのみ焦点が当てられている。
これらのメカニズムが英語以外の言語や多言語 LLM にどのように一般化されるのかという問題は未解明のままである。
本稿では,3つの多言語LLMの包括的解析を行うことにより,このギャップに対処する。
まず,従来同定されていたリコール機構が,言語とアーキテクチャに基づくニュアンスを持つ多言語文脈に適用可能であることを示す。
次に、中間表現にパッチを当てることで、リコール中の言語の役割をローカライズし、被写体豊かさは言語に依存しないが、オブジェクト抽出は言語に依存していることを示す。
さらに、最後のトークン表現が関数ベクトル(FV)として機能し、クエリの言語と被写体から抽出されるコンテンツの両方を符号化する。
さらに、デコーダのみのLLMでは、FVは2つの別々の段階でこれらの2つの情報を構成する。
これらの知見は,多言語LLMに特化された知識評価,事実編集,知識獲得など,新たな方法論の必要性を浮き彫りにした,多言語LLMの独特なメカニズムを明らかにする。
関連論文リスト
- How does a Multilingual LM Handle Multiple Languages? [0.0]
本研究では,多言語理解,意味表現,言語間知識伝達の能力について批判的に検討する。
コサイン類似性を用いた一貫性のための多言語単語埋め込みの分析により意味的類似性を評価する。
BLOOM-1.7B と Qwen2 を Named Entity Recognition と文類似性タスクを通して調べ、それらの言語構造を理解する。
論文 参考訳(メタデータ) (2025-02-06T18:08:14Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Multilingual Needle in a Haystack: Investigating Long-Context Behavior of Multilingual Large Language Models [22.859955360764275]
本稿では,MultiLingual Needle-in-a-Haystack(MLNeedle)テストを導入する。
我々はMLNeedleの4つの最先端の大規模言語モデルを評価する。
論文 参考訳(メタデータ) (2024-08-19T17:02:06Z) - Faux Polyglot: A Study on Information Disparity in Multilingual Large Language Models [7.615938028813914]
言語間RAGに基づく情報検索における言語嗜好について検討した。
その結果,LLMは問合せ言語と同じ言語で情報に対する体系的バイアスを示すことがわかった。
論文 参考訳(メタデータ) (2024-07-07T21:26:36Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - 1+1>2: Can Large Language Models Serve as Cross-Lingual Knowledge Aggregators? [46.43162333819418]
大規模言語モデル(LLM)は、様々な言語にまたがって情報を処理できることから、大きな注目を集めている。
それらの能力にもかかわらず、異なる言語で同じクエリを扱うことに矛盾を示し、さらなる進歩のための課題を提示している。
本稿では,多言語からの知識を集約することで,LLMの多言語的性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T20:32:53Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
LLM(Large Language Models)の急速な開発は、自然言語処理における顕著な多言語機能を示している。
LLMのブレークスルーにもかかわらず、多言語シナリオの研究は依然として不十分である。
本調査は,多言語問題に対する研究コミュニティの取り組みを支援することを目的としており,LLMに基づく多言語自然言語処理における中核概念,鍵技術,最新の発展の包括的理解を提供する。
論文 参考訳(メタデータ) (2024-05-17T17:47:39Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - Adapters for Enhanced Modeling of Multilingual Knowledge and Text [54.02078328453149]
言語モデルは多言語言語モデル(MLLM)に拡張された。
知識グラフは、注意深いキュレーションを必要とし、少数の高リソース言語でのみ利用可能である、明示的な三重形式で事実を含む。
我々は,MLLMを多言語知識グラフ(MLKG)からの知識で拡張し,言語や知識グラフのタスクに多くの言語で取り組むことを提案する。
論文 参考訳(メタデータ) (2022-10-24T21:33:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。