論文の概要: Fault-tolerant simulation of Lattice Gauge Theories with gauge covariant codes
- arxiv url: http://arxiv.org/abs/2405.19293v1
- Date: Wed, 29 May 2024 17:21:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 16:02:26.466589
- Title: Fault-tolerant simulation of Lattice Gauge Theories with gauge covariant codes
- Title(参考訳): ゲージ共変符号を用いた格子ゲージ理論のフォールトトレラントシミュレーション
- Authors: L. Spagnoli, A. Roggero, N. Wiebe,
- Abstract要約: 量子誤り訂正と格子ゲージ理論(LGT)の間には、強くて簡単な接続が存在することを示す。
このゲージ共変符号上の論理演算を同定し、対応するハミルトニアンがこれらの論理演算の項で表現できることを示す。
積公式と量子化法の両方を用いて、ゲージ共変符号内でハミルトニアンのフォールトトレラント時間進化を行う方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show in this paper that a strong and easy connection exists between quantum error correction and Lattice Gauge Theories (LGT) by using the Gauge symmetry to construct an efficient error-correcting code for Abelian LGTs. We identify the logical operations on this gauge covariant code and show that the corresponding Hamiltonian can be expressed in terms of these logical operations while preserving the locality of the interactions. Furthermore, we demonstrate that these substitutions actually give a new way of writing the LGT as an equivalent hardcore boson model. Finally we demonstrate a method to perform fault-tolerant time evolution of the Hamiltonian within the gauge covariant code using both product formulas and qubitization approaches. This opens up the possibility of inexpensive end to end dynamical simulations that save physical qubits by blurring the lines between simulation algorithms and quantum error correcting codes.
- Abstract(参考訳): 本稿では、量子誤り訂正と格子ゲージ理論(LGT)の間に、ガウス対称性を用いて、アベリアLGTの効率的な誤り訂正符号を構築することにより、強い容易な接続が存在することを示す。
このゲージ共変符号上の論理演算を同定し、対応するハミルトニアンがこれらの論理演算の項で表現でき、相互作用の局所性を保っていることを示す。
さらに、これらの置換がLGTを等価なハードコアボソンモデルとして記述する方法を実際に示している。
最後に、積公式と量子化法の両方を用いて、ゲージ共変符号内でハミルトニアンのフォールトトレラント時間進化を行う方法を示す。
これにより、シミュレーションアルゴリズムと量子エラー訂正符号の間の線をぼかすことによって物理量子ビットを節約する、安価なエンドツーエンドの動的シミュレーションの可能性が開ける。
関連論文リスト
- A Theoretical Perspective for Speculative Decoding Algorithm [60.79447486066416]
EmphSpeculative Decodingは、小さなモデルを使用して、ドラフトトークンのシーケンスと、検証のための大きなモデルをサンプリングする。
本稿では,マルコフ連鎖抽象化による復号化問題を概念化し,理論的な観点から,鍵特性,エファンアウトプットの品質,推論加速度について考察する。
論文 参考訳(メタデータ) (2024-10-30T01:53:04Z) - Low-overhead fault-tolerant quantum computation by gauging logical operators [0.7673339435080445]
近年の進歩により、少ない接続要件と一定量子ビットオーバーヘッドを持つ量子エラー訂正符号が明らかになった。
フォールトトレラントな論理測度の既存のスキームは、常に低量子ビットオーバーヘッドを達成するとは限らない。
本稿では、量子誤り訂正符号において、論理演算子を対称性として扱い、それをゲージすることで、フォールトトレラントな論理測定を実現する低オーバーヘッド法を提案する。
論文 参考訳(メタデータ) (2024-10-03T05:04:12Z) - Quantum error thresholds for gauge-redundant digitizations of lattice
field theories [9.080653388540972]
一般有限ゲージ群に対する修正可能な誤差を考慮し、量子回路を設計して検出し、修正する。
ガウスの法則誤差補正によるゲージ依存ディジタル化がゲージ固定ディジタル化よりも忠実であるような誤差閾値を計算する。
論文 参考訳(メタデータ) (2024-02-26T17:51:48Z) - Quantum Error Correction with Gauge Symmetries [69.02115180674885]
Lattice Gauge Theories (LGT) の量子シミュレーションは、物理セクターと非物理セクターの両方を含む拡大されたヒルベルト空間上でしばしば定式化される。
本稿では,位相フリップ誤り訂正符号とガウス法則を組み合わせることで,そのような冗長性を利用する簡易なフォールトトレラント法を提案する。
論文 参考訳(メタデータ) (2021-12-09T19:29:34Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Suppressing Coherent Gauge Drift in Quantum Simulations [0.0]
ゲージ理論では、大きな種類の誤差はゲージ対称性に反し、したがってシミュレーションで生じる非物理的過程をもたらす可能性がある。
非アベリアゲージ理論に適用可能な手法として,擬似ランダムゲージ変換の繰り返し適用によるコヒーレントゲージドリフト誤差を抑制する手法を提案する。
論文 参考訳(メタデータ) (2020-05-26T13:12:27Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
量子プロセッサは、ハードウェアに固有のものではないダイナミクスを効率的にシミュレートするためにプログラムできることを示す。
誤差補正のないノイズのあるデバイスでは、モジュールゲートを用いて量子プログラムをコンパイルするとシミュレーション結果が大幅に改善されることを示す。
論文 参考訳(メタデータ) (2020-04-15T05:16:24Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
NISQとフォールトトレラントの両方の設定で格子シュウィンガーモデルをシミュレートするために、スケーラブルで明示的なデジタル量子アルゴリズムを提供する。
格子単位において、結合定数$x-1/2$と電場カットオフ$x-1/2Lambda$を持つ$N/2$物理サイト上のシュウィンガーモデルを求める。
NISQと耐故障性の両方でコストがかかるオブザーバブルを、単純なオブザーバブルとして推定し、平均ペア密度を推定する。
論文 参考訳(メタデータ) (2020-02-25T19:18:36Z) - Term Grouping and Travelling Salesperson for Digital Quantum Simulation [6.945601123742983]
ハミルトニアンの時間発展を評価する量子力学のデジタルシミュレーションは、当初提案されていた量子コンピューティングの応用である。
ハミルトニアンの完全な第2量子化形式をエミュレートするために必要な多数の量子ゲートは、そのようなアプローチを短期デバイスには適さない。
アルゴリズムと物理の誤りを同時に軽減する新しい項順序付け戦略であるmax-commute-tspを提案する。
論文 参考訳(メタデータ) (2020-01-16T18:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。