SSFF: Investigating LLM Predictive Capabilities for Startup Success through a Multi-Agent Framework with Enhanced Explainability and Performance
- URL: http://arxiv.org/abs/2405.19456v2
- Date: Sat, 19 Apr 2025 17:18:29 GMT
- Title: SSFF: Investigating LLM Predictive Capabilities for Startup Success through a Multi-Agent Framework with Enhanced Explainability and Performance
- Authors: Xisen Wang, Yigit Ihlamur, Fuat Alican,
- Abstract summary: The Startup Success Forecasting Framework is an autonomous system that emulates the reasoning of venture capital analysts.<n>By leveraging founder segmentation, startups led by L5 founders are 3.79 times more likely to succeed than those led by L1 founders.<n>Our framework significantly enhances prediction accuracy, yielding a 108.3 percent relative improvement over GPT 4o mini and a 30.8 percent relative improvement over GPT 4o.
- Score: 0.16385815610837165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM based agents have recently demonstrated strong potential in automating complex tasks, yet accurately predicting startup success remains an open challenge with few benchmarks and tailored frameworks. To address these limitations, we propose the Startup Success Forecasting Framework, an autonomous system that emulates the reasoning of venture capital analysts through a multi agent collaboration model. Our framework integrates traditional machine learning methods such as random forests and neural networks within a retrieval augmented generation framework composed of three interconnected modules: a prediction block, an analysis block, and an external knowledge block. We evaluate our framework and identify three main findings. First, by leveraging founder segmentation, startups led by L5 founders are 3.79 times more likely to succeed than those led by L1 founders. Second, baseline large language models consistently overpredict startup success and struggle under realistic class imbalances largely due to overreliance on founder claims. Third, our framework significantly enhances prediction accuracy, yielding a 108.3 percent relative improvement over GPT 4o mini and a 30.8 percent relative improvement over GPT 4o. These results demonstrate the value of a multi agent approach combined with discriminative machine learning in mitigating the limitations of standard large language model based prediction methods.
Related papers
- Random Rule Forest (RRF): Interpretable Ensembles of LLM-Generated Questions for Predicting Startup Success [0.0]
We present a lightweight ensemble framework that combines YES/NO questions generated by large language models (LLMs)<n>On a test set where 10% of startups are classified as successful, our approach achieves a precision rate of 50%, representing a 5x improvement over random selection.<n>These results highlight the value of combining reasoning with human insight and demonstrate simple, interpretable ensembles can support high-stakes decisions in domains such as venture capital (VC)
arXiv Detail & Related papers (2025-05-30T14:13:21Z) - Policy Induction: Predicting Startup Success via Explainable Memory-Augmented In-Context Learning [0.0]
We propose a transparent and data-efficient investment decision framework powered by memory-augmented large language models.<n>We introduce a lightweight training process that combines few-shot learning with an in-context learning loop.<n>Our system predicts startup success far more accurately than existing benchmarks.
arXiv Detail & Related papers (2025-05-27T16:57:07Z) - Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs [31.457954100196524]
We propose a trustworthy reasoning framework, termed Deliberation over Priors (DP)<n>DP integrates structural priors into Large Language Models (LLMs) through a combination of supervised fine-tuning and Kahneman-Tversky optimization.<n>Our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors.
arXiv Detail & Related papers (2025-05-21T07:38:45Z) - A Trustworthy Multi-LLM Network: Challenges,Solutions, and A Use Case [59.58213261128626]
We propose a blockchain-enabled collaborative framework that connects multiple Large Language Models (LLMs) into a Trustworthy Multi-LLM Network (MultiLLMN)<n>This architecture enables the cooperative evaluation and selection of the most reliable and high-quality responses to complex network optimization problems.
arXiv Detail & Related papers (2025-05-06T05:32:46Z) - Reasoning-Based AI for Startup Evaluation (R.A.I.S.E.): A Memory-Augmented, Multi-Step Decision Framework [0.0]
We present a novel framework that bridges the gap between the interpretability of decision trees and the advanced reasoning capabilities of large language models (LLMs) to predict startup success.
Our approach leverages chain-of-thought prompting to generate detailed reasoning logs, which are subsequently distilled into structured, human-understandable logical rules.
Our method not only augments traditional decision-making processes but also facilitates expert intervention and continuous policy refinement.
arXiv Detail & Related papers (2025-04-16T13:53:42Z) - Will Pre-Training Ever End? A First Step Toward Next-Generation Foundation MLLMs via Self-Improving Systematic Cognition [86.21199607040147]
Self-Improving cognition (SIcog) is a self-learning framework for constructing next-generation foundation language models.
We introduce Chain-of-Description, a step-by-step visual understanding method, and integrate structured chain-of-thought (CoT) reasoning to support in-depth multimodal reasoning.
Extensive experiments demonstrate that SIcog produces next-generation foundation MLLMs with substantially improved multimodal cognition.
arXiv Detail & Related papers (2025-03-16T00:25:13Z) - MCTS-Judge: Test-Time Scaling in LLM-as-a-Judge for Code Correctness Evaluation [17.432401371613903]
We propose a resource-efficient, System-2 thinking framework for code correctness evaluation.
MCTS-Judge uses Monte Carlo Tree Search to decompose problems into simpler, multi-perspective evaluations.
High-precision, unit-test-level reward mechanism encourages the Large Language Model to perform line-by-line analysis.
arXiv Detail & Related papers (2025-02-18T02:55:48Z) - Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
We develop an adversarial reasoning approach to automatic jailbreaking via test-time computation.
Our approach introduces a new paradigm in understanding LLM vulnerabilities, laying the foundation for the development of more robust and trustworthy AI systems.
arXiv Detail & Related papers (2025-02-03T18:59:01Z) - FinRobot: AI Agent for Equity Research and Valuation with Large Language Models [6.2474959166074955]
This paper presents FinRobot, the first AI agent framework specifically designed for equity research.
FinRobot employs a multi-agent Chain of Thought (CoT) system, integrating both quantitative and qualitative analyses to emulate the comprehensive reasoning of a human analyst.
Unlike existing automated research tools, such as CapitalCube and Wright Reports, FinRobot delivers insights comparable to those produced by major brokerage firms and fundamental research vendors.
arXiv Detail & Related papers (2024-11-13T17:38:07Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Networks of Networks: Complexity Class Principles Applied to Compound AI Systems Design [63.24275274981911]
Compound AI Systems consisting of many language model inference calls are increasingly employed.
In this work, we construct systems, which we call Networks of Networks (NoNs) organized around the distinction between generating a proposed answer and verifying its correctness.
We introduce a verifier-based judge NoN with K generators, an instantiation of "best-of-K" or "judge-based" compound AI systems.
arXiv Detail & Related papers (2024-07-23T20:40:37Z) - Automating Venture Capital: Founder assessment using LLM-powered segmentation, feature engineering and automated labeling techniques [0.0]
This study explores the application of large language models (LLMs) in venture capital (VC) decision-making.
We utilize LLM prompting techniques, like chain-of-thought, to generate features from limited data, then extract insights through statistics and machine learning.
Our results reveal potential relationships between certain founder characteristics and success, as well as demonstrate the effectiveness of these characteristics in prediction.
arXiv Detail & Related papers (2024-07-05T22:54:13Z) - AutoDetect: Towards a Unified Framework for Automated Weakness Detection in Large Language Models [95.09157454599605]
Large Language Models (LLMs) are becoming increasingly powerful, but they still exhibit significant but subtle weaknesses.
Traditional benchmarking approaches cannot thoroughly pinpoint specific model deficiencies.
We introduce a unified framework, AutoDetect, to automatically expose weaknesses in LLMs across various tasks.
arXiv Detail & Related papers (2024-06-24T15:16:45Z) - KGPA: Robustness Evaluation for Large Language Models via Cross-Domain Knowledge Graphs [5.798411590796167]
This paper proposes a framework that systematically evaluates the robustness of large language models under adversarial attack scenarios.
Our framework generates original prompts from the triplets of knowledge graphs and creates adversarial prompts by poisoning.
Experiments show that adversarial robustness of the ChatGPT family ranks as GPT-4-turbo > GPT-4o > GPT-3.5-turbo, and the robustness of large language models is influenced by the professional domains in which they operate.
arXiv Detail & Related papers (2024-06-16T04:48:43Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
Large Language Models (LLMs) have significantly advanced natural language processing.
As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework.
This work introduces a novel competition-based benchmark framework to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Chain-of-Thought Hub: A Continuous Effort to Measure Large Language
Models' Reasoning Performance [35.38549845444575]
Chain-of-Thought Hub is an open-source evaluation suite on the multi-step reasoning capabilities of large language models.
This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models.
arXiv Detail & Related papers (2023-05-26T23:46:42Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
We show the possibility of substituting manually created ML pipelines with automated machine learning (AutoML) solutions.
Based on the CRISP-DM process, we split the manual ML pipeline into a machine learning and non-machine learning part.
We show in a case study for the industrial use case of price forecasting, that domain knowledge combined with AutoML can weaken the dependence on ML experts.
arXiv Detail & Related papers (2023-04-28T10:27:38Z) - Analytical Engines With Context-Rich Processing: Towards Efficient
Next-Generation Analytics [12.317930859033149]
We envision an analytical engine co-optimized with components that enable context-rich analysis.
We aim for a holistic pipeline cost- and rule-based optimization across relational and model-based operators.
arXiv Detail & Related papers (2022-12-14T21:46:33Z) - A Time Series Approach to Explainability for Neural Nets with
Applications to Risk-Management and Fraud Detection [0.0]
Trust in technology is enabled by understanding the rationale behind the predictions made.
For cross-sectional data classical XAI approaches can lead to valuable insights about the models' inner workings.
We propose a novel XAI technique for deep learning methods which preserves and exploits the natural time ordering of the data.
arXiv Detail & Related papers (2022-12-06T12:04:01Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Engineering an Intelligent Essay Scoring and Feedback System: An
Experience Report [1.5168188294440734]
We describe an exploratory system for assessing the quality of essays supplied by customers of a specialized recruitment support service.
The problem domain is challenging because the open-ended customer-supplied source text has considerable scope for ambiguity and error.
There is also a need to incorporate specialized business domain knowledge into the intelligent processing systems.
arXiv Detail & Related papers (2021-03-25T03:46:05Z) - RANK: AI-assisted End-to-End Architecture for Detecting Persistent
Attacks in Enterprise Networks [2.294014185517203]
We present an end-to-end AI-assisted architecture for detecting Advanced Persistent Threats (APTs)
The architecture is composed of four consecutive steps: 1) alert templating and merging, 2) alert graph construction, 3) alert graph partitioning into incidents, and 4) incident scoring and ordering.
Extensive results are provided showing a three order of magnitude reduction in the amount of data to be reviewed by the analyst, innovative extraction of incidents and security-wise scoring of extracted incidents.
arXiv Detail & Related papers (2021-01-06T15:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.