TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI
- URL: http://arxiv.org/abs/2405.19492v2
- Date: Wed, 26 Feb 2025 12:27:21 GMT
- Title: TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI
- Authors: Tugba Akinci D'Antonoli, Lucas K. Berger, Ashraya K. Indrakanti, Nathan Vishwanathan, Jakob Weiß, Matthias Jung, Zeynep Berkarda, Alexander Rau, Marco Reisert, Thomas Küstner, Alexandra Walter, Elmar M. Merkle, Daniel Boll, Hanns-Christian Breit, Andrew Phillip Nicoli, Martin Segeroth, Joshy Cyriac, Shan Yang, Jakob Wasserthal,
- Abstract summary: A nnU-Net model (TotalSegmentator) was trained on MRI and segment 80atomic structures.<n>Dice scores were calculated between the predicted segmentations and expert reference standard segmentations to evaluate model performance.<n>Open-source, easy-to-use model allows for automatic, robust segmentation of 80 structures.
- Score: 59.86827659781022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the introduction of TotalSegmentator CT, there is demand for a similar robust automated MRI segmentation tool that can be applied across all MRI sequences and anatomic structures. In this retrospective study, a nnU-Net model (TotalSegmentator) was trained on MRI and CT examinations to segment 80 anatomic structures relevant for use cases such as organ volumetry, disease characterization, surgical planning and opportunistic screening. Examinations were randomly sampled from routine clinical studies to represent real-world examples. Dice scores were calculated between the predicted segmentations and expert radiologist reference standard segmentations to evaluate model performance on an internal test set, two external test sets and against two publicly available models, and TotalSegmentator CT. The model was applied to an internal dataset containing abdominal MRIs to investigate age-dependent volume changes. A total of 1143 examinations (616 MRIs, 527 CTs) (median age 61 years, IQR 50-72) were split into training (n=1088, CT and MRI) and an internal test set (n=55; only MRI), two external test sets (AMOS, n=20; CHAOS, n=20; only MRI), and an internal aging-study dataset of 8672 abdominal MRIs (median age 59 years, IQR 45-70) were included. The model showed a Dice Score of 0.839 on the internal test set and outperformed two other models (Dice Score, 0.862 versus 0.759; and 0.838 versus 0.560; p<.001 for both). The proposed open-source, easy-to-use model allows for automatic, robust segmentation of 80 structures, extending the capabilities of TotalSegmentator to MRIs of any sequence. The ready-to-use online tool is available at https://totalsegmentator.com, the model at https://github.com/wasserth/TotalSegmentator, and the dataset at https://zenodo.org/records/14710732.
Related papers
- Full-Head Segmentation of MRI with Abnormal Brain Anatomy: Model and Data Release [1.738379704680519]
We collected 91 MRIs with volumetric segmentation labels for a diverse set of human subjects.
We developed a MultiAxial network consisting of three 2D U-Net models that operate independently in sagittal, axial, and coronal planes.
We are releasing a state-of-the-art model for whole-head MRI segmentation, along with a dataset of 61 clinical MRIs and training labels, including non-brain structures.
arXiv Detail & Related papers (2025-01-30T19:31:13Z) - SALT: Introducing a Framework for Hierarchical Segmentations in Medical Imaging using Softmax for Arbitrary Label Trees [1.004700727815227]
This study introduces a novel segmentation technique for CT imaging, which leverages conditional probabilities to map the hierarchical structure of anatomical landmarks.
The model was developed using the SAROS dataset from The Cancer Imaging Archive (TCIA), comprising 900 body region segmentations from 883 patients.
Performance was assessed using the Dice score across various datasets, including SAROS, CT-ORG, FLARE22, LCTSC, LUNA16, and WORD.
arXiv Detail & Related papers (2024-07-11T21:33:08Z) - MRSegmentator: Multi-Modality Segmentation of 40 Classes in MRI and CT [29.48170108608303]
The model was trained on 1,200 manually annotated 3D axial MRI scans from the UK Biobank, 221 in-house MRI scans, and 1228 CT scans.
It demonstrated high accuracy for well-defined organs (lungs: DSC 0.96, heart: DSC 0.94) and organs with anatomic variability (liver: DSC 0.96, kidneys: DSC 0.95)
It generalized well to CT, achieving DSC mean of 0.84 $pm$ 0.11 on AMOS CT data.
arXiv Detail & Related papers (2024-05-10T13:15:42Z) - MRISegmentator-Abdomen: A Fully Automated Multi-Organ and Structure Segmentation Tool for T1-weighted Abdominal MRI [12.236789438183138]
There is no publicly available abdominal MRI dataset with voxel-level annotations of multiple organs and structures.
A 3D nnUNet model, dubbed as MRISegmentator-Abdomen (MRISegmentator in short), was trained on this dataset.
The tool provides automatic, accurate, and robust segmentations of 62 organs and structures in T1-weighted abdominal MRI sequences.
arXiv Detail & Related papers (2024-05-09T17:33:09Z) - MRAnnotator: A Multi-Anatomy Deep Learning Model for MRI Segmentation [31.000474738216155]
Two datasets were curated and annotated for model development and evaluation.
The developed model achieves robust and generalizable segmentation of 49 anatomic structures on MRI imaging.
arXiv Detail & Related papers (2024-02-01T21:43:27Z) - One Model to Rule them All: Towards Universal Segmentation for Medical Images with Text Prompts [62.55349777609194]
We aim to build up a model that can Segment Anything in radiology scans, driven by Text prompts, termed as SAT.
We build up the largest and most comprehensive segmentation dataset for training, by collecting over 22K 3D medical image scans.
We have trained SAT-Nano (110M parameters) and SAT-Pro (447M parameters) demonstrating comparable performance to 72 specialist nnU-Nets trained on each dataset/subsets.
arXiv Detail & Related papers (2023-12-28T18:16:00Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - A self-supervised learning strategy for postoperative brain cavity
segmentation simulating resections [46.414990784180546]
Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique.
CNNs require large annotated datasets for training.
Self-supervised learning strategies can leverage unlabeled data for training.
arXiv Detail & Related papers (2021-05-24T12:27:06Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - H2NF-Net for Brain Tumor Segmentation using Multimodal MR Imaging: 2nd
Place Solution to BraTS Challenge 2020 Segmentation Task [96.49879910148854]
Our H2NF-Net uses the single and cascaded HNF-Nets to segment different brain tumor sub-regions.
We trained and evaluated our model on the Multimodal Brain Tumor Challenge (BraTS) 2020 dataset.
Our method won the second place in the BraTS 2020 challenge segmentation task out of nearly 80 participants.
arXiv Detail & Related papers (2020-12-30T20:44:55Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.