論文の概要: Qiskit Code Assistant: Training LLMs for generating Quantum Computing Code
- arxiv url: http://arxiv.org/abs/2405.19495v1
- Date: Wed, 29 May 2024 20:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 19:16:17.483753
- Title: Qiskit Code Assistant: Training LLMs for generating Quantum Computing Code
- Title(参考訳): Qiskit Code Assistant: 量子コンピューティングコードを生成するためのLLMのトレーニング
- Authors: Nicolas Dupuis, Luca Buratti, Sanjay Vishwakarma, Aitana Viudes Forrat, David Kremer, Ismael Faro, Ruchir Puri, Juan Cruz-Benito,
- Abstract要約: 本稿では,量子コンピューティングの分野を専門とする Code LLM のトレーニングに焦点をあてる。
量子コンピューティングに特化したコードLLMは、量子コンピューティングと量子情報理論の基本的な理解を必要とする。
我々は,Qiskitライブラリを用いて,高品質な量子コードを生成するための Code LLMs のトレーニングについて論じる。
- 参考スコア(独自算出の注目度): 2.0108122340549985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code Large Language Models (Code LLMs) have emerged as powerful tools, revolutionizing the software development landscape by automating the coding process and reducing time and effort required to build applications. This paper focuses on training Code LLMs to specialize in the field of quantum computing. We begin by discussing the unique needs of quantum computing programming, which differ significantly from classical programming approaches or languages. A Code LLM specializing in quantum computing requires a foundational understanding of quantum computing and quantum information theory. However, the scarcity of available quantum code examples and the rapidly evolving field, which necessitates continuous dataset updates, present significant challenges. Moreover, we discuss our work on training Code LLMs to produce high-quality quantum code using the Qiskit library. This work includes an examination of the various aspects of the LLMs used for training and the specific training conditions, as well as the results obtained with our current models. To evaluate our models, we have developed a custom benchmark, similar to HumanEval, which includes a set of tests specifically designed for the field of quantum computing programming using Qiskit. Our findings indicate that our model outperforms existing state-of-the-art models in quantum computing tasks. We also provide examples of code suggestions, comparing our model to other relevant code LLMs. Finally, we introduce a discussion on the potential benefits of Code LLMs for quantum computing computational scientists, researchers, and practitioners. We also explore various features and future work that could be relevant in this context.
- Abstract(参考訳): Code Large Language Models (Code LLMs) は強力なツールとして登場し、コーディングプロセスの自動化とアプリケーション構築に必要な時間と労力の削減によって、ソフトウェア開発の世界に革命をもたらした。
本稿では,量子コンピューティングの分野を専門とする Code LLM のトレーニングに焦点をあてる。
まず、古典的なプログラミング手法や言語とは大きく異なる量子コンピューティングプログラミングのユニークなニーズについて議論する。
量子コンピューティングに特化したコードLLMは、量子コンピューティングと量子情報理論の基本的な理解を必要とする。
しかし、利用可能な量子コードサンプルの不足と、継続的なデータセット更新を必要とする急速に進化するフィールドは、重大な課題を呈している。
さらに,Qiskitライブラリを用いた高品質な量子コードを生成するために,コードLLMをトレーニングする作業についても論じる。
本研究は, 訓練用LLMの様々な側面と訓練条件, および現在のモデルで得られた結果について検討することを含む。
我々のモデルを評価するために、我々は、Qiskitを用いた量子コンピューティングプログラミングの分野に特化して設計された一連のテストを含むHumanEvalに似たカスタムベンチマークを開発した。
以上の結果から,我々のモデルは量子コンピューティングタスクにおける既存の最先端モデルよりも優れていたことが示唆された。
また、コード提案の例を示し、私たちのモデルを他の関連するコードLLMと比較します。
最後に、量子コンピューティングの計算科学者、研究者、実践者に対して、Code LLMsの潜在的なメリットについて論じる。
この状況に関係のあるさまざまな機能や今後の作業についても検討しています。
関連論文リスト
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
量子機械学習(QML)は、量子コンピューティングの原理と従来の機械学習を組み合わせた急速に成長する分野である。
本稿では,変分量子回路を用いてQMLアーキテクチャを開発する機械学習パラダイムの量子コンピューティングについて述べる。
論文 参考訳(メタデータ) (2024-11-14T12:27:50Z) - Application of Large Language Models to Quantum State Simulation [0.11666234644810894]
現在、様々な量子シミュレーターが研究者に強力なツールを提供しているが、これらのシミュレーターで量子進化をシミュレートすると、しばしば高コストが発生する。
本稿では、1量子ビットと2量子ビットの量子シミュレータモデルを構築し、複数の量子ビットに拡張し、最終的には3量子ビットの例を実装する過程を詳述する。
本研究は,LLMが量子ビット間の進化パターンを理論的出力状態と比較して最小限の誤差で効果的に学習し,予測できることを実証する。
論文 参考訳(メタデータ) (2024-10-09T07:23:13Z) - Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models [1.8213213818713139]
我々は、Qiskit HumanEvalデータセットを導入し、量子コードを生成するための大規模言語モデルの能力をベンチマークするために使用します。
このデータセットは100以上の量子コンピューティングタスクから構成されており、それぞれにプロンプト、標準解、そして生成した解の正確性を評価するのに困難スケールが伴っている。
論文 参考訳(メタデータ) (2024-06-20T20:14:22Z) - Advancing Quantum Software Engineering: A Vision of Hybrid Full-Stack Iterative Model [5.9478154558776435]
本稿では,Quantum Software Develop-mentライフサイクルのビジョンを紹介する。
量子コンピューティングと古典コンピューティングを統合するハイブリッドフルスタック反復モデルを提案する。
論文 参考訳(メタデータ) (2024-03-18T11:18:33Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
本稿では,製造シミュレーションのための量子コンピューティングによるサービスエコシステムの枠組みを提案する。
我々は,これらの新しい計算パラダイムを定量的に評価することを目的とした2つの高価値ユースケースを分析した。
論文 参考訳(メタデータ) (2024-01-19T11:04:14Z) - The QUATRO Application Suite: Quantum Computing for Models of Human
Cognition [49.038807589598285]
量子コンピューティング研究のための新しい種類のアプリケーション -- 計算認知モデリング -- をアンロックします。
我々は、認知モデルから量子コンピューティングアプリケーションのコレクションであるQUATROをリリースする。
論文 参考訳(メタデータ) (2023-09-01T17:34:53Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Classification with Quantum Machine Learning: A Survey [17.55390082094971]
我々は古典的機械学習(ML)と量子情報処理(QIP)を組み合わせることで、量子世界における量子機械学習(QML)と呼ばれる新しい分野を構築する。
本稿では,量子機械学習(QML)の最先端技術に関する包括的調査を提示し,要約する。
論文 参考訳(メタデータ) (2020-06-22T14:05:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。