論文の概要: Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models
- arxiv url: http://arxiv.org/abs/2406.14712v1
- Date: Thu, 20 Jun 2024 20:14:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 17:49:36.165674
- Title: Qiskit HumanEval: An Evaluation Benchmark For Quantum Code Generative Models
- Title(参考訳): Qiskit HumanEval: 量子コード生成モデルの評価ベンチマーク
- Authors: Sanjay Vishwakarma, Francis Harkins, Siddharth Golecha, Vishal Sharathchandra Bajpe, Nicolas Dupuis, Luca Buratti, David Kremer, Ismael Faro, Ruchir Puri, Juan Cruz-Benito,
- Abstract要約: 我々は、Qiskit HumanEvalデータセットを導入し、量子コードを生成するための大規模言語モデルの能力をベンチマークするために使用します。
このデータセットは100以上の量子コンピューティングタスクから構成されており、それぞれにプロンプト、標準解、そして生成した解の正確性を評価するのに困難スケールが伴っている。
- 参考スコア(独自算出の注目度): 1.8213213818713139
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum programs are typically developed using quantum Software Development Kits (SDKs). The rapid advancement of quantum computing necessitates new tools to streamline this development process, and one such tool could be Generative Artificial intelligence (GenAI). In this study, we introduce and use the Qiskit HumanEval dataset, a hand-curated collection of tasks designed to benchmark the ability of Large Language Models (LLMs) to produce quantum code using Qiskit - a quantum SDK. This dataset consists of more than 100 quantum computing tasks, each accompanied by a prompt, a canonical solution, a comprehensive test case, and a difficulty scale to evaluate the correctness of the generated solutions. We systematically assess the performance of a set of LLMs against the Qiskit HumanEval dataset's tasks and focus on the models ability in producing executable quantum code. Our findings not only demonstrate the feasibility of using LLMs for generating quantum code but also establish a new benchmark for ongoing advancements in the field and encourage further exploration and development of GenAI-driven tools for quantum code generation.
- Abstract(参考訳): 量子プログラムは一般的に、量子ソフトウェア開発キット(SDK)を使って開発される。
量子コンピューティングの急速な進歩は、この開発プロセスを合理化するための新しいツールを必要とし、そのようなツールの1つが生成人工知能(GenAI)である可能性がある。
本研究では,量子SDKであるQiskitを用いて,大規模言語モデル(LLM)の量子コード生成能力のベンチマークを目的とした,手作業によるタスクの集合であるQiskit HumanEvalデータセットを導入・使用する。
このデータセットは100以上の量子コンピューティングタスクで構成され、それぞれにプロンプト、標準解、包括的なテストケース、および、生成されたソリューションの正確性を評価するための難易度尺度が付属している。
我々は,Qiskit HumanEvalデータセットのタスクに対して,一組のLLMの性能を体系的に評価し,実行可能な量子コードを生成するためのモデル能力に焦点を当てる。
本研究は,LLMを用いた量子コード生成の実現可能性を示すだけでなく,この分野の進展の新たなベンチマークを構築し,量子コード生成のためのGenAI駆動ツールのさらなる探索と開発を奨励するものである。
関連論文リスト
- QCircuitNet: A Large-Scale Hierarchical Dataset for Quantum Algorithm Design [17.747641494506087]
量子アルゴリズムの設計と実装におけるAIの能力を評価するために設計された、最初のベンチマークおよびテストデータセットであるQCircuitNetを紹介する。
従来のコードの記述にAIを使用するのとは異なり、このタスクは基本的に異なり、非常に柔軟な設計空間と複雑なキュービット操作のため、さらに複雑である。
論文 参考訳(メタデータ) (2024-10-10T14:24:30Z) - LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [7.945302052915863]
量子機械学習の潜在的な応用は、古典的なデータを生成するために量子コンピュータのパワーを利用することである。
本稿では,自己エンコーダと結合したハイブリッド量子古典的GANを用いた新しい量子モデルであるLatntQGANを提案する。
論文 参考訳(メタデータ) (2024-09-22T23:18:06Z) - The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Qiskit Code Assistant: Training LLMs for generating Quantum Computing Code [2.0108122340549985]
本稿では,量子コンピューティングの分野を専門とする Code LLM のトレーニングに焦点をあてる。
量子コンピューティングに特化したコードLLMは、量子コンピューティングと量子情報理論の基本的な理解を必要とする。
我々は,Qiskitライブラリを用いて,高品質な量子コードを生成するための Code LLMs のトレーニングについて論じる。
論文 参考訳(メタデータ) (2024-05-29T20:21:00Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
本稿では,製造シミュレーションのための量子コンピューティングによるサービスエコシステムの枠組みを提案する。
我々は,これらの新しい計算パラダイムを定量的に評価することを目的とした2つの高価値ユースケースを分析した。
論文 参考訳(メタデータ) (2024-01-19T11:04:14Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - iQuantum: A Case for Modeling and Simulation of Quantum Computing
Environments [22.068803245816266]
iQuantumは、ハイブリッド量子古典計算環境をモデル化できる第一種シミュレーションツールキットである。
本稿では,量子コンピューティングシステムモデル,アーキテクチャ設計,概念実証実装,潜在的なユースケース,今後のiQuantumの開発について述べる。
論文 参考訳(メタデータ) (2023-03-28T04:51:32Z) - Preparing random state for quantum financing with quantum walks [1.2074552857379273]
本稿では,古典的ハードウェア上で量子コンピュータや量子シミュレータで実行可能な量子状態に古典的データをロードする効率的な手法を提案する。
Qiskitを使ったSSQWの実装の実践例がオープンソースソフトウェアとしてリリースされた。
所望の確率振幅分布を生成するための有望な方法として、その可能性を示すことは、量子シミュレーションによるオプション価格設定におけるSSQWの適用の可能性を強調している。
論文 参考訳(メタデータ) (2023-02-24T08:01:35Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
そこで我々は,古典的な3つのハードラーニング問題に対処するために,QAEに基づく効果的な3つの学習プロトコルを考案した。
私たちの研究は、ハード量子物理学と量子情報処理タスクを達成するための高度な量子学習アルゴリズムの開発に新たな光を当てています。
論文 参考訳(メタデータ) (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。