論文の概要: Exploring the Potential of Hybrid Machine-Learning/Physics-Based Modeling for Atmospheric/Oceanic Prediction Beyond the Medium Range
- arxiv url: http://arxiv.org/abs/2405.19518v1
- Date: Wed, 29 May 2024 20:56:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 19:06:28.634572
- Title: Exploring the Potential of Hybrid Machine-Learning/Physics-Based Modeling for Atmospheric/Oceanic Prediction Beyond the Medium Range
- Title(参考訳): 中距離を超える大気・海洋予測のためのハイブリッド・マシンラーニング/物理モデルの可能性を探る
- Authors: Dhruvit Patel, Troy Arcomano, Brian Hunt, Istvan Szunyogh, Edward Ott,
- Abstract要約: 本稿では、機械学習(ML)と従来の物理モデルを組み合わせたハイブリッドモデリング手法の可能性について検討する。
このモデルは、低分解能で簡易なパラメータ化大気一般循環モデル(AGCM)SPEEDYに基づいている。
このモデルはエルニーノの周期と、季節によって3~7ヶ月の降水量による地球規模のテレコネクションを予測する能力を持っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the potential of a hybrid modeling approach that combines machine learning (ML) with conventional physics-based modeling for weather prediction beyond the medium range. It extends the work of Arcomano et al. (2022), which tested the approach for short- and medium-range weather prediction, and the work of Arcomano et al. (2023), which investigated its potential for climate modeling. The hybrid model used for the forecast experiments of the paper is based on the low-resolution, simplified parameterization atmospheric general circulation model (AGCM) SPEEDY. In addition to the hybridized prognostic variables of SPEEDY, the current version of the model has three purely ML-based prognostic variables. One of these is 6~h cumulative precipitation, another is the sea surface temperature, while the third is the heat content of the top 300 m deep layer of the ocean. The model has skill in predicting the El Ni\~no cycle and its global teleconnections with precipitation for 3-7 months depending on the season. The model captures equatorial variability of the precipitation associated with Kelvin and Rossby waves and MJO. Predictions of the precipitation in the equatorial region have skill for 15 days in the East Pacific and 11.5 days in the West Pacific. Though the model has low spatial resolution, for these tasks it has prediction skill comparable to what has been published for high-resolution, purely physics-based, conventional operational forecast models.
- Abstract(参考訳): 本稿では、機械学習(ML)と従来の物理モデルを組み合わせたハイブリッドモデリング手法の可能性について検討する。
短距離・中距離気象予測のためのアプローチを検証したArcomano et al(2022年)と、気候モデリングの可能性を調査したArcomano et al(2023年)の作業を拡張した。
論文の予測実験に使用するハイブリッドモデルは,低分解能で簡易なパラメータ化大気一般循環モデル(AGCM)SPEEDYに基づいている。
SPEEDYのハイブリッド化された予後変数に加えて、現在のモデルには3つのMLベースの予後変数がある。
そのうちの1つは6~hの累積降水であり、もう1つは海面温度であり、もう1つは海深300mの層の熱量である。
このモデルには、エルニーニョのサイクルと、季節によって3~7ヶ月の降水を伴う世界的なテレコネクションを予測する能力がある。
このモデルはケルビン波やロスビー波、MJOに伴う降水の赤道変動を捉えている。
赤道域の降水量の予測は東太平洋で15日、西太平洋で11.5日である。
このモデルは空間分解能が低いが、これらのタスクには高解像度で純粋に物理ベースの従来の運用予測モデルに匹敵する予測技術がある。
関連論文リスト
- Kilometer-Scale Convection Allowing Model Emulation using Generative Diffusion Modeling [19.340636269420692]
ストームスケール対流許容モデル(CAM)は雷雨とメソスケール対流システムの進化を予測する重要なツールである。
深層学習モデルは、これまでのところ、kmスケールの大気シミュレーションでは十分には証明されていない。
我々は,高分解能高速リフレッシュ(HRRR)モデル-NOAAの最先端3km動作CAMをエミュレートしたStormCastと呼ばれる生成拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-08-20T15:56:01Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Embedding machine-learnt sub-grid variability improves climate model biases [0.44998333629984877]
雲形成の下の表現は、気候シミュレーションに関連する長年の偏見である。
高分解能統一モデルシミュレーションで訓練された多出力ガウス過程(MOGP)を組み込むことで,これらのバイアスを克服する。
制御モデルとMLハイブリッドモデルの両方に対して10年間の予測が生成される。
論文 参考訳(メタデータ) (2024-06-13T19:35:58Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Forecasting Tropical Cyclones with Cascaded Diffusion Models [4.272401529389713]
この研究は、生成拡散モデルを利用してサイクロン軌道と降水パターンを予測する。
予測は1台のNvidia A30/RTX 2080 Tiで30分で作成できる。
論文 参考訳(メタデータ) (2023-10-02T23:09:59Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Dynamical Tests of a Deep-Learning Weather Prediction Model [0.0]
ディープラーニングの天気予報モデルは、運用センターで実行される物理ベースのモデルに匹敵する予測を生成することが示されている。
これらのモデルが大気力学を符号化したのか、あるいは最小の予測誤差を生成する単純なパターンマッチングなのかは不明だ。
ここでは、モデルトレーニングデータに似ていない4つの古典力学実験の集合に、そのようなモデルPangu-weatherを適用する。
本モデルは,すべての実験において現実的な物理を符号化し,高額な物理モデルを使用する前に,アイデアを迅速にテストするためのツールとして使用できることを示唆する。
論文 参考訳(メタデータ) (2023-09-19T18:26:41Z) - Expanding Mars Climate Modeling: Interpretable Machine Learning for
Modeling MSL Relative Humidity [0.0]
本稿では,機械学習技術を活用した火星の気候モデリング手法を提案する。
我々の研究は、Gale Craterの相対湿度を正確にモデル化するために設計されたディープニューラルネットワークを提案する。
我々のニューラルネットワークは、いくつかの気象変数を用いて、ガレクレーターの相対湿度を効果的にモデル化できることがわかった。
論文 参考訳(メタデータ) (2023-09-04T08:15:15Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - A Hybrid Model for Forecasting Short-Term Electricity Demand [59.372588316558826]
現在、英国電気市場は、規制当局が30分毎に発行する負荷(需要)予測によってガイドされている。
本稿では,機能工学(候補予測機能の選択),移動ウィンドウ予測,LSTMエンコーダデコーダを組み合わせたハイブリッド予測モデルHYENAを提案する。
論文 参考訳(メタデータ) (2022-05-20T22:13:25Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。