論文の概要: Clustering Mixtures of Discrete Distributions: A Note on Mitra's Algorithm
- arxiv url: http://arxiv.org/abs/2405.19559v1
- Date: Wed, 29 May 2024 22:55:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 18:56:18.054113
- Title: Clustering Mixtures of Discrete Distributions: A Note on Mitra's Algorithm
- Title(参考訳): 離散分布のクラスタリング混合:Mitraのアルゴリズムについて
- Authors: Mohamed Seif, Yanxi Chen,
- Abstract要約: 我々は、一般的な離散混合分布モデルを分類するために、Mitraのアルゴリズム citemitra2008clustering の洗練された解析を行う。
この分析をブロックモデルに分割することで強化し、より洗練された条件を導出する。
- 参考スコア(独自算出の注目度): 6.144810219612421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this note, we provide a refined analysis of Mitra's algorithm \cite{mitra2008clustering} for classifying general discrete mixture distribution models. Built upon spectral clustering \cite{mcsherry2001spectral}, this algorithm offers compelling conditions for probability distributions. We enhance this analysis by tailoring the model to bipartite stochastic block models, resulting in more refined conditions. Compared to those derived in \cite{mitra2008clustering}, our improved separation conditions are obtained.
- Abstract(参考訳): 本稿では、一般的な離散混合分布モデルを分類するためのMitraのアルゴリズム \cite{mitra2008clustering} の洗練された解析を行う。
このアルゴリズムはスペクトルクラスタリング \cite{mcsherry 2001spectral} に基づいて構築され、確率分布に対して魅力的な条件を提供する。
この分析は,確率的ブロックモデルに2分割するようにモデルを調整し,より洗練された条件を与える。
その結果, 分離条件の改善が得られた。
関連論文リスト
- HeNCler: Node Clustering in Heterophilous Graphs through Learned Asymmetric Similarity [55.27586970082595]
HeNClerは、Heterophilous Node Clusteringの新しいアプローチである。
HeNClerは異種グラフコンテキストにおけるノードクラスタリングタスクの性能を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2024-05-27T11:04:05Z) - Finite mixture of skewed sub-Gaussian stable distributions [0.0]
提案モデルは正規分布とスキュー分布の有限混合を含む。
堅牢なモデルベースのクラスタリングのための強力なモデルとして使用できる。
論文 参考訳(メタデータ) (2022-05-27T15:51:41Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
本稿では,大規模なスパースネットワークのクラスにおいて,高い確率で完全クラスタリングを実現するスペクトルアルゴリズムを提案する。
本手法は,スペクトルクラスタリングによる一貫した潜在構造回復を保証する最初の方法である。
論文 参考訳(メタデータ) (2022-05-17T01:41:06Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - Optimal Clustering in Anisotropic Gaussian Mixture Models [3.5590836605011047]
異方性ガウス混合モデルに基づくクラスタリング作業について検討する。
クラスタ中心における信号対雑音比の依存性を特徴づける。
論文 参考訳(メタデータ) (2021-01-14T00:31:52Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Consistent Estimation of Identifiable Nonparametric Mixture Models from
Grouped Observations [84.81435917024983]
この研究は、グループ化された観測から任意の同定可能な混合モデルを一貫して推定するアルゴリズムを提案する。
ペア化された観測のために実践的な実装が提供され、アプローチは既存の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-12T20:44:22Z) - Strong Consistency, Graph Laplacians, and the Stochastic Block Model [1.2891210250935143]
ブロックモデルを学ぶために,古典的な2段階のスペクトルクラスタリングの性能をグラフラプラシアンを用いて検討する。
スペクトルクラスタリングは,情報理論の限界に合致する条件下で,植民コミュニティ構造を正確に復元できることを示す。
論文 参考訳(メタデータ) (2020-04-21T07:16:46Z) - Distributed Learning with Dependent Samples [17.075804626858748]
我々は、分散カーネルリッジ回帰のための最適な学習率を、強い混合配列に対して導出する。
本研究は, 分散学習の応用範囲を, サンプルから非I.d.シーケンスまで拡張した。
論文 参考訳(メタデータ) (2020-02-10T14:03:45Z) - Conjoined Dirichlet Process [63.89763375457853]
我々はディリクレ過程に基づく新しい非パラメトリック確率的ビクラスタリング法を開発し、列と列の双方に強い共起を持つビクラスタを同定する。
本手法はテキストマイニングと遺伝子発現解析の2つの異なる応用に適用し,既存の手法に比べて多くの設定でビクラスタ抽出を改善することを示す。
論文 参考訳(メタデータ) (2020-02-08T19:41:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。