論文の概要: Optimal Clustering in Anisotropic Gaussian Mixture Models
- arxiv url: http://arxiv.org/abs/2101.05402v2
- Date: Mon, 18 Jan 2021 04:24:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 00:55:14.672347
- Title: Optimal Clustering in Anisotropic Gaussian Mixture Models
- Title(参考訳): 異方性ガウス混合モデルにおける最適クラスタリング
- Authors: Xin Chen, Anderson Y. Zhang
- Abstract要約: 異方性ガウス混合モデルに基づくクラスタリング作業について検討する。
クラスタ中心における信号対雑音比の依存性を特徴づける。
- 参考スコア(独自算出の注目度): 3.5590836605011047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the clustering task under anisotropic Gaussian Mixture Models where
the covariance matrices from different clusters are unknown and are not
necessarily the identical matrix. We characterize the dependence of
signal-to-noise ratios on the cluster centers and covariance matrices and
obtain the minimax lower bound for the clustering problem. In addition, we
propose a computationally feasible procedure and prove it achieves the optimal
rate within a few iterations. The proposed procedure is a hard EM type
algorithm, and it can also be seen as a variant of the Lloyd's algorithm that
is adjusted to the anisotropic covariance matrices.
- Abstract(参考訳): 異方性ガウス混合モデルでは、異なるクラスタからの共分散行列が未知であり、必ずしも同一行列であるとは限らない。
本稿では,クラスタ中心と共分散行列に対する信号対雑音比の依存性を特徴付け,クラスタリング問題に対するミニマックス下界を求める。
さらに,計算可能な手順を提案し,数回の反復で最適値が得られることを示す。
提案手法はハードem型アルゴリズムであり、異方性共分散行列に調整されたロイドのアルゴリズムの変種と見なすこともできる。
関連論文リスト
- An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - Clustering based on Mixtures of Sparse Gaussian Processes [6.939768185086753]
低次元の組込み空間を使ってデータをクラスタする方法は、マシンラーニングにおいて依然として難しい問題である。
本稿では,クラスタリングと次元還元の両立を目的とした共同定式化を提案する。
我々のアルゴリズムはスパースガウス過程の混合に基づいており、スパースガウス過程混合クラスタリング(SGP-MIC)と呼ばれる。
論文 参考訳(メタデータ) (2023-03-23T20:44:36Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Likelihood Adjusted Semidefinite Programs for Clustering Heterogeneous
Data [16.153709556346417]
クラスタリングは広くデプロイされた学習ツールである。
iLA-SDPはEMよりも感度が低く、高次元データでは安定である。
論文 参考訳(メタデータ) (2022-09-29T21:03:13Z) - A Non-Parametric Bootstrap for Spectral Clustering [0.7673339435080445]
我々は,データ行列のスペクトル分解と非パラメトリックブートストラップサンプリング方式を組み合わせた2つの新しいアルゴリズムを開発した。
我々の手法は、有限混合モデルに適合する他のブートストラップアルゴリズムと比較して収束性においてより一貫性がある。
論文 参考訳(メタデータ) (2022-09-13T08:37:05Z) - Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model [12.868722327487752]
行列値の観測を行うために低ランク混合モデル(LrMM)を提案する。
ロイドのアルゴリズムと低ランク近似を統合して計算効率のよいクラスタリング法を設計する。
本手法は,実世界のデータセットにおける文献上の他者よりも優れる。
論文 参考訳(メタデータ) (2022-07-11T03:16:10Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Spatially Coherent Clustering Based on Orthogonal Nonnegative Matrix
Factorization [0.0]
本稿では,クラスタメンバシップ行列の総変動(TV)正規化手順に基づく作業クラスタリングモデルを紹介する。
マトリックス支援レーザー脱離イオン化イメージング測定から得られた超スペクトルデータセット上の提案手法をすべて数値的に評価する。
論文 参考訳(メタデータ) (2021-04-25T23:40:41Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
本稿では,複数のクラスタリングを組み合わせ,個々のクラスタリングよりも優れたパフォーマンスを実現するクラスタリングアンサンブルの問題について検討する。
本稿では,この問題をグローバルな視点から解くために,新しい低ランクテンソル近似法を提案する。
7つのベンチマークデータセットを用いた実験の結果,提案手法は12の最先端手法と比較して,クラスタリング性能のブレークスルーを達成した。
論文 参考訳(メタデータ) (2020-12-16T13:01:37Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。