論文の概要: PATIENT-Ψ: Using Large Language Models to Simulate Patients for Training Mental Health Professionals
- arxiv url: http://arxiv.org/abs/2405.19660v3
- Date: Thu, 03 Oct 2024 21:05:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-07 18:20:14.070796
- Title: PATIENT-Ψ: Using Large Language Models to Simulate Patients for Training Mental Health Professionals
- Title(参考訳): 患者---大規模言語モデルを用いたメンタルヘルス専門家の育成
- Authors: Ruiyi Wang, Stephanie Milani, Jamie C. Chiu, Jiayin Zhi, Shaun M. Eack, Travis Labrum, Samuel M. Murphy, Nev Jones, Kate Hardy, Hong Shen, Fei Fang, Zhiyu Zoey Chen,
- Abstract要約: patient-Psiは認知行動療法(CBT)トレーニングのための新しい患者シミュレーションフレームワークである。
我々は,精神保健研修生が CBT の重要なスキルを身につけるための,対話型トレーニングスキームである patient-Psi-TRAINER を提案する。
- 参考スコア(独自算出の注目度): 22.87612889868498
- License:
- Abstract: Mental illness remains one of the most critical public health issues. Despite its importance, many mental health professionals highlight a disconnect between their training and actual real-world patient practice. To help bridge this gap, we propose PATIENT-{\Psi}, a novel patient simulation framework for cognitive behavior therapy (CBT) training. To build PATIENT-{\Psi}, we construct diverse patient cognitive models based on CBT principles and use large language models (LLMs) programmed with these cognitive models to act as a simulated therapy patient. We propose an interactive training scheme, PATIENT-{\Psi}-TRAINER, for mental health trainees to practice a key skill in CBT -- formulating the cognitive model of the patient -- through role-playing a therapy session with PATIENT-{\Psi}. To evaluate PATIENT-{\Psi}, we conducted a comprehensive user study of 13 mental health trainees and 20 experts. The results demonstrate that practice using PATIENT-{\Psi}-TRAINER enhances the perceived skill acquisition and confidence of the trainees beyond existing forms of training such as textbooks, videos, and role-play with non-patients. Based on the experts' perceptions, PATIENT-{\Psi} is perceived to be closer to real patient interactions than GPT-4, and PATIENT-{\Psi}-TRAINER holds strong promise to improve trainee competencies. Our code and data are released at \url{https://github.com/ruiyiw/patient-psi}.
- Abstract(参考訳): 精神病は公衆衛生の最も重大な問題の一つである。
その重要性にもかかわらず、多くのメンタルヘルス専門家は、トレーニングと実際の現実世界の患者の実践との間の断絶を強調している。
このギャップを埋めるために,認知行動療法(CBT)トレーニングのための新しい患者シミュレーションフレームワークであるPatent-{\Psi}を提案する。
patient-{\Psi} を構築するために,CBT の原理に基づく多様な患者認知モデルを構築し,これらの認知モデルでプログラムされた大規模言語モデル(LLM)を用いてシミュレートされた治療患者として機能する。
精神保健研修生を対象に,患者-{\Psiとセラピーセッションのロールプレイングを通じて,CBT(認知モデル)の重要なスキルを実践するための対話型トレーニングスキーム「患者-{\Psi}-TRAINER」を提案する。
そこで我々は,13名の精神保健研修生と20名の専門家を対象に,包括的調査を行った。
その結果,患者-{\Psi}-TRAINERの実践は,教科書やビデオ,非患者とのロールプレイといった既存の学習形態を超えて,訓練者のスキル獲得と信頼を高めることが示唆された。
専門家の認識から,患者-{\Psi} は GPT-4 よりも実際の患者間相互作用に近いと認識され,患者-{\Psi}-TRAINER は訓練能力の向上を強く約束している。
我々のコードとデータは \url{https://github.com/ruiyiw/ patient-psi} でリリースされます。
関連論文リスト
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT [6.812247730094931]
本研究は,大規模言語モデル(LLM)をエビデンスベースの治療の担い手として用いる可能性と限界について検討する。
認知行動療法(CBT)に根ざした公衆アクセス型メンタルヘルスの会話を再現し,セッションダイナミクスとカウンセラーのCBTに基づく行動の比較を行った。
その結果, ピアセッションは共感, 小話, セラピーアライアンス, 共有体験が特徴であるが, セラピストのドリフトがしばしば現れることがわかった。
論文 参考訳(メタデータ) (2024-09-03T19:19:13Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
我々は,認知行動療法(Cognitive Behavioral Therapy, CBT)の目標指向的, 構造化的アプローチを用いて, 実生活インタラクションをエミュレートする多ターン対話データセットを作成する。
我々は、実際のカウンセリングセッションの評価、専門家の評価との整合性の確保に使用される確立された心理学的基準をベンチマークする。
Cactusで訓練されたモデルであるCamelはカウンセリングスキルにおいて他のモデルよりも優れており、カウンセリングエージェントとしての有効性と可能性を強調している。
論文 参考訳(メタデータ) (2024-07-03T13:41:31Z) - CBT-LLM: A Chinese Large Language Model for Cognitive Behavioral Therapy-based Mental Health Question Answering [0.0]
本研究では,大規模言語モデルによる心理的支援の精度と有効性を高めるための新しいアプローチを提案する。
我々は認知行動療法(CBT)の原理に基づく特定のプロンプトを設計し、CBT QAデータセットを作成した。
CBT-LLMは認知行動療法に特化して設計された大規模言語モデルである。
論文 参考訳(メタデータ) (2024-03-24T04:34:34Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
人工知能(AI)とロボットコーチは、社会的相互作用を通じてリハビリテーション運動における患者の関与を改善することを約束する。
これまでの研究は、AIやロボットコーチの運動を自動的に監視する可能性を探ったが、デプロイは依然として難しい課題だ。
我々は,AIとロボットコーチが患者の運動をどのように操作し,指導するかに関する詳細な設計仕様を提示する。
論文 参考訳(メタデータ) (2021-06-15T22:06:39Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。