論文の概要: Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT
- arxiv url: http://arxiv.org/abs/2409.02244v1
- Date: Tue, 3 Sep 2024 19:19:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-05 21:27:46.237973
- Title: Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT
- Title(参考訳): NLP課題としてのセラピー : 心理学者によるCBTにおけるLLMと人間ピアの比較
- Authors: Zainab Iftikhar, Sean Ransom, Amy Xiao, Jeff Huang,
- Abstract要約: 本研究は,大規模言語モデル(LLM)をエビデンスベースの治療の担い手として用いる可能性と限界について検討する。
認知行動療法(CBT)に根ざした公衆アクセス型メンタルヘルスの会話を再現し,セッションダイナミクスとカウンセラーのCBTに基づく行動の比較を行った。
その結果, ピアセッションは共感, 小話, セラピーアライアンス, 共有体験が特徴であるが, セラピストのドリフトがしばしば現れることがわかった。
- 参考スコア(独自算出の注目度): 6.812247730094931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wider access to therapeutic care is one of the biggest challenges in mental health treatment. Due to institutional barriers, some people seeking mental health support have turned to large language models (LLMs) for personalized therapy, even though these models are largely unsanctioned and untested. We investigate the potential and limitations of using LLMs as providers of evidence-based therapy by using mixed methods clinical metrics. Using HELPERT, a prompt run on a large language model using the same process and training as a comparative group of peer counselors, we replicated publicly accessible mental health conversations rooted in Cognitive Behavioral Therapy (CBT) to compare session dynamics and counselor's CBT-based behaviors between original peer support sessions and their reconstructed HELPERT sessions. Two licensed, CBT-trained clinical psychologists evaluated the sessions using the Cognitive Therapy Rating Scale and provided qualitative feedback. Our findings show that the peer sessions are characterized by empathy, small talk, therapeutic alliance, and shared experiences but often exhibit therapist drift. Conversely, HELPERT reconstructed sessions exhibit minimal therapist drift and higher adherence to CBT methods but display a lack of collaboration, empathy, and cultural understanding. Through CTRS ratings and psychologists' feedback, we highlight the importance of human-AI collaboration for scalable mental health. Our work outlines the ethical implication of imparting human-like subjective qualities to LLMs in therapeutic settings, particularly the risk of deceptive empathy, which may lead to unrealistic patient expectations and potential harm.
- Abstract(参考訳): 治療機関への幅広いアクセスは、精神医療における最大の課題の1つである。
制度上の障壁により、精神的な健康支援を求める人々は、大きな言語モデル(LLM)に転換してパーソナライズされた治療を行っている。
LLMをエビデンスベースの治療の担い手として用いる可能性と限界について,混合法の臨床指標を用いて検討した。
HELPERTを用いて,認知行動療法(Cognitive Behavioral Therapy, CBT)に根ざした公衆アクセス型メンタルヘルスの会話を再現し, セッションのダイナミクスと, オリジナルのピアサポートセッションと再構成されたHELPERTセッションとのCBTに基づく行動を比較した。
CBTを訓練した2人の臨床心理学者が認知療法評価尺度を用いてセッションを評価し、質的なフィードバックを提供した。
その結果, ピアセッションは共感, 小話, セラピーアライアンス, 共有体験が特徴であるが, セラピストのドリフトがしばしば現れることがわかった。
逆に、HELPERT再構成セッションは、最小のセラピストドリフトとCBT法への高い順守を示すが、協調、共感、文化的理解の欠如を示す。
CTRS評価と心理学者のフィードバックを通じて、スケーラブルなメンタルヘルスにおける人間とAIのコラボレーションの重要性を強調した。
本研究は,LLMに人間のような主観的品質を付与することの倫理的意味,特に非現実的な患者への期待や潜在的な害をもたらす誤認のリスクについて概説する。
関連論文リスト
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
大規模言語モデル(LLM)が検証され、心理的補助療法の新たな可能性を提供する。
精神保健の専門家は、LSMを治療に使用することについて多くの懸念を抱いている。
自然言語処理性能に優れた4つのLLM変種を評価した。
論文 参考訳(メタデータ) (2024-07-25T03:01:47Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
我々は,認知行動療法(Cognitive Behavioral Therapy, CBT)の目標指向的, 構造化的アプローチを用いて, 実生活インタラクションをエミュレートする多ターン対話データセットを作成する。
我々は、実際のカウンセリングセッションの評価、専門家の評価との整合性の確保に使用される確立された心理学的基準をベンチマークする。
Cactusで訓練されたモデルであるCamelはカウンセリングスキルにおいて他のモデルよりも優れており、カウンセリングエージェントとしての有効性と可能性を強調している。
論文 参考訳(メタデータ) (2024-07-03T13:41:31Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
メンタルエンハンスメント(HealMe)モデルにおける適応言語によるヘルピングとエンパワーメントについて紹介する。
この新しい認知的リフレーミング療法は、根深い否定的思考に効果的に対処し、合理的でバランスの取れた視点を育む。
我々は、認知リフレーミングのパフォーマンスを厳格に評価するために特別に設計された、包括的で専門的な心理学的評価指標を採用した。
論文 参考訳(メタデータ) (2024-02-26T09:10:34Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models [2.679689033125693]
本稿では,心理療法の知見を活かして,大規模言語モデル(LLM)を誘導し,人間の感情状態を理解する新しい方法である「共感の連鎖(CoE)」を提案する。
この方法は認知行動療法(CBT)、弁証的行動療法(DBT)、人中心療法(PCT)、現実療法(RT)など様々な心理療法のアプローチにインスパイアされている。
論文 参考訳(メタデータ) (2023-11-02T02:21:39Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
戦略トレーニング (Strategy Training) とは、脳卒中後の認知障害患者に障害を減らすためのスキルを教える、リハビリテーションのアプローチである。
標準化された忠実度評価は治療原則の遵守度を測定するために用いられる。
本研究では,ルールベースNLPアルゴリズム,長短項メモリ(LSTM)モデル,および変換器(BERT)モデルからの双方向エンコーダ表現を開発した。
論文 参考訳(メタデータ) (2022-09-14T15:33:30Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
人工知能(AI)とロボットコーチは、社会的相互作用を通じてリハビリテーション運動における患者の関与を改善することを約束する。
これまでの研究は、AIやロボットコーチの運動を自動的に監視する可能性を探ったが、デプロイは依然として難しい課題だ。
我々は,AIとロボットコーチが患者の運動をどのように操作し,指導するかに関する詳細な設計仕様を提示する。
論文 参考訳(メタデータ) (2021-06-15T22:06:39Z) - STAN: A stuttering therapy analysis helper [59.37911277681339]
発声は、繰り返し、音、音節または単語の延長、発話中のブロックによって識別される複雑な音声障害である。
本稿では, 言語療法士を支援するシステムSTANについて紹介する。
論文 参考訳(メタデータ) (2021-06-15T13:48:12Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。