A novel fault localization with data refinement for hydroelectric units
- URL: http://arxiv.org/abs/2405.19665v1
- Date: Thu, 30 May 2024 03:33:49 GMT
- Title: A novel fault localization with data refinement for hydroelectric units
- Authors: Jialong Huang, Junlin Song, Penglong Lian, Mengjie Gan, Zhiheng Su, Benhao Wang, Wenji Zhu, Xiaomin Pu, Jianxiao Zou, Shicai Fan,
- Abstract summary: A sparse autoencoder (SAE)-generative adversarial network (GAN)-wavelet noise reduction (WNR)- manifold-boosted deep learning (SG-WMBDL) based fault localization method is proposed.
Considering the signals involving non-linear and non-smooth characteristics, the improved WNR which combining both soft and hard thresholding and local linear embedding (LLE) are utilized.
The experimental results show that the SG-WMBDL can locate faults for hydroelectric units on higher precision and accuracy compared to other frontier methods.
- Score: 0.8847676725602007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the scarcity of fault samples and the complexity of non-linear and non-smooth characteristics data in hydroelectric units, most of the traditional hydroelectric unit fault localization methods are difficult to carry out accurate localization. To address these problems, a sparse autoencoder (SAE)-generative adversarial network (GAN)-wavelet noise reduction (WNR)- manifold-boosted deep learning (SG-WMBDL) based fault localization method for hydroelectric units is proposed. To overcome the data scarcity, a SAE is embedded into the GAN to generate more high-quality samples in the data generation module. Considering the signals involving non-linear and non-smooth characteristics, the improved WNR which combining both soft and hard thresholding and local linear embedding (LLE) are utilized to the data preprocessing module in order to reduce the noise and effectively capture the local features. In addition, to seek higher performance, the novel Adaptive Boost (AdaBoost) combined with multi deep learning is proposed to achieve accurate fault localization. The experimental results show that the SG-WMBDL can locate faults for hydroelectric units under a small number of fault samples with non-linear and non-smooth characteristics on higher precision and accuracy compared to other frontier methods, which verifies the effectiveness and practicality of the proposed method.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Towards Interpretable Deep Local Learning with Successive Gradient Reconciliation [70.43845294145714]
Relieving the reliance of neural network training on a global back-propagation (BP) has emerged as a notable research topic.
We propose a local training strategy that successively regularizes the gradient reconciliation between neighboring modules.
Our method can be integrated into both local-BP and BP-free settings.
arXiv Detail & Related papers (2024-06-07T19:10:31Z) - Generative adversarial wavelet neural operator: Application to fault
detection and isolation of multivariate time series data [3.265784083548797]
This article proposes a generative adversarial wavelet neural operator (GAWNO) as a novel unsupervised deep learning approach for fault detection and isolation.
In the first stage, the GAWNO is trained on a dataset of normal operating conditions to learn the underlying data distribution.
In the second stage, a reconstruction error-based threshold approach is employed to detect and isolate faults based on the discrepancy values.
arXiv Detail & Related papers (2024-01-08T16:36:47Z) - Learning Regionalization using Accurate Spatial Cost Gradients within a Differentiable High-Resolution Hydrological Model: Application to the French Mediterranean Region [0.18139022013189662]
Estimating distributed hydrological parameters in ungauged catchments poses a challenging regionalization problem.
This paper introduces a Hybrid Assimilation and Regionalization (HDA-PR) approach incorporating learnable regionalization mappings.
Results highlight a strong regionalization of HDA-PR especially in the most challenging upstream-to-downstream extrapolation scenario.
arXiv Detail & Related papers (2023-08-02T07:23:50Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Bridging the Gap Between Clean Data Training and Real-World Inference
for Spoken Language Understanding [76.89426311082927]
Existing models are trained on clean data, which causes a textitgap between clean data training and real-world inference.
We propose a method from the perspective of domain adaptation, by which both high- and low-quality samples are embedding into similar vector space.
Experiments on the widely-used dataset, Snips, and large scale in-house dataset (10 million training examples) demonstrate that this method not only outperforms the baseline models on real-world (noisy) corpus but also enhances the robustness, that is, it produces high-quality results under a noisy environment.
arXiv Detail & Related papers (2021-04-13T17:54:33Z) - Robust Ultra-wideband Range Error Mitigation with Deep Learning at the
Edge [0.0]
Multipath effects, reflections, refractions, and complexity of the indoor radio environment can introduce a positive bias in the ranging measurement.
This article proposes an efficient representation learning methodology that exploits the latest advancement in deep learning and graph optimization techniques.
Channel Impulse Response (CIR) signals are directly exploited to extract high semantic features to estimate corrections in either NLoS or LoS conditions.
arXiv Detail & Related papers (2020-11-30T10:52:21Z) - Uncertainty Aware Deep Neural Network for Multistatic Localization with
Application to Ultrasonic Structural Health Monitoring [0.0]
This paper uses an uncertainty-aware deep neural distribution network framework to learn robust localization models.
We show that the predictive uncertainty scales as environmental uncertainty increases to provide a statistically meaningful metric for assessing localization accuracy.
arXiv Detail & Related papers (2020-07-14T04:53:06Z) - EGFC: Evolving Gaussian Fuzzy Classifier from Never-Ending
Semi-Supervised Data Streams -- With Application to Power Quality Disturbance
Detection and Classification [0.0]
Real-time detection and classification of disturbances are deemed essential to industry standards.
We propose an Evolving Gaussian Fuzzy Classification framework for semi-supervised disturbance detection and classification.
Online data-stream-based EGFC method is able to learn disturbance patterns autonomously from never-ending data streams.
arXiv Detail & Related papers (2020-04-17T07:08:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.