論文の概要: PDDLEGO: Iterative Planning in Textual Environments
- arxiv url: http://arxiv.org/abs/2405.19793v1
- Date: Thu, 30 May 2024 08:01:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 15:28:56.590595
- Title: PDDLEGO: Iterative Planning in Textual Environments
- Title(参考訳): PDDLEGO: テキスト環境における反復的計画
- Authors: Li Zhang, Peter Jansen, Tianyi Zhang, Peter Clark, Chris Callison-Burch, Niket Tandon,
- Abstract要約: テキスト環境における計画は、現在のモデルにおいても長年にわたる課題であることが示されている。
我々は,あるサブゴールの部分的な計画に導く計画表現を反復的に構築するPDDLEGOを提案する。
数ショットのPDDLEGOで作成するプランは,Coin Collectorシミュレーションでエンドツーエンドのプランを生成するよりも43%効率がよいことを示す。
- 参考スコア(独自算出の注目度): 56.12148805913657
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Planning in textual environments have been shown to be a long-standing challenge even for current models. A recent, promising line of work uses LLMs to generate a formal representation of the environment that can be solved by a symbolic planner. However, existing methods rely on a fully-observed environment where all entity states are initially known, so a one-off representation can be constructed, leading to a complete plan. In contrast, we tackle partially-observed environments where there is initially no sufficient information to plan for the end-goal. We propose PDDLEGO that iteratively construct a planning representation that can lead to a partial plan for a given sub-goal. By accomplishing the sub-goal, more information is acquired to augment the representation, eventually achieving the end-goal. We show that plans produced by few-shot PDDLEGO are 43% more efficient than generating plans end-to-end on the Coin Collector simulation, with strong performance (98%) on the more complex Cooking World simulation where end-to-end LLMs fail to generate coherent plans (4%).
- Abstract(参考訳): テキスト環境における計画は、現在のモデルにおいても長年にわたる課題であることが示されている。
最近の有望な作業ラインでは、LLMを使用して、シンボルプランナーによって解決可能な環境の形式表現を生成する。
しかしながら、既存のメソッドは、すべてのエンティティ状態が最初に知られている完全なオブザーブド環境に依存しているため、ワンオフ表現を構築することができ、完全な計画に繋がる。
対照的に、エンドゴールに向けて計画する十分な情報が当初存在しない部分的観測環境に取り組む。
我々は,あるサブゴールの部分的な計画に導く計画表現を反復的に構築するPDDLEGOを提案する。
サブゴールを達成することで、より多くの情報を取得して表現を拡大し、最終的にエンドゴールを達成する。
複数ショットのPDDLEGOで作成するプランは,Coin Collectorシミュレーションのエンド・ツー・エンドのプランよりも43%効率が高く,より複雑なCooking Worldシミュレーションでは,エンド・ツー・エンドのLCMがコヒーレントなプランを生成できない(4%)。
関連論文リスト
- Open Grounded Planning: Challenges and Benchmark Construction [44.86307213996181]
我々は,新たな計画課題--オープン・グランド・プランニングを提案する。
オープングランドプランニングの主な目的は、可変アクションセットに基づいて実行可能なプランを生成するようモデルに求めることである。
そして、現在最先端のLLMを5つの計画手法とともにテストし、既存のLLMとメソッドが、オープンドメインの基盤となる計画によってもたらされる課題を解決するのに依然として苦労していることを明らかにした。
論文 参考訳(メタデータ) (2024-06-05T03:46:52Z) - Real-World Planning with PDDL+ and Beyond [55.73913765642435]
我々は、軽量さ、単純さ、そして最も重要なのは適応性を強調するために作られた新しいPDDL+プランナーであるNyxを紹介する。
Nyxは、ある種のAIプランニングを必要とする事実上の現実世界のアプリケーションに合わせることができ、現実の問題を解決するための計画手法をより広く採用するための道を開くことができる。
論文 参考訳(メタデータ) (2024-02-19T07:35:49Z) - AutoGPT+P: Affordance-based Task Planning with Large Language Models [6.848986296339031]
AutoGPT+Pは、余裕に基づくシーン表現と計画システムを組み合わせたシステムである。
提案手法は,現在最先端のLCM計画手法であるSayCanの81%の成功率を超え,98%の成功率を達成した。
論文 参考訳(メタデータ) (2024-02-16T16:00:50Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
実世界のシナリオにおけるMLLMの計画能力を評価するベンチマークであるEgoPlan-Benchを紹介する。
EgoPlan-Benchは、人間レベルのタスクプランニングを実現するためのMLLMの改善のかなりの範囲を浮き彫りにする。
また,EgoPlan-Bench上でのモデル性能を効果的に向上する特殊命令チューニングデータセットであるEgoPlan-ITを提案する。
論文 参考訳(メタデータ) (2023-12-11T03:35:58Z) - Planning as In-Painting: A Diffusion-Based Embodied Task Planning
Framework for Environments under Uncertainty [56.30846158280031]
具体的AIのためのタスクプランニングは、最も難しい問題の1つだ。
In-paintingとしての計画」というタスク非依存の手法を提案する。
提案するフレームワークは,様々な具体的AIタスクにおいて,有望なパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-02T10:07:17Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
本研究では,現場制約を考慮した地上計画のための具体的タスクにおけるTAsk Planing Agent (TaPA)を提案する。
推論の際には,オープンボキャブラリオブジェクト検出器を様々な場所で収集された多視点RGB画像に拡張することにより,シーン内の物体を検出する。
実験の結果,我々のTaPAフレームワークから生成されたプランは,LLaVAやGPT-3.5よりも大きなマージンで高い成功率が得られることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:58:25Z) - AdaPlanner: Adaptive Planning from Feedback with Language Models [56.367020818139665]
大規模言語モデル(LLM)は、最近、シーケンシャルな意思決定タスクの自律的エージェントとして機能する可能性を実証している。
本研究では,LLMエージェントが環境フィードバックに応じて自己生成計画を適応的に改善することのできるクローズドループアプローチであるAdaPlannerを提案する。
幻覚を緩和するために,様々なタスク,環境,エージェント機能にまたがる計画生成を容易にするコードスタイルのLCMプロンプト構造を開発した。
論文 参考訳(メタデータ) (2023-05-26T05:52:27Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
本稿では,象徴的タスク計画と機械学習アプローチのギャップを埋めることを目的としたフレームワークを提案する。
大規模言語モデル(LLM)を計画ドメイン定義言語(PDDL)と互換性のあるニューロシンボリックタスクプランナーに訓練する根拠
選択されたドメインにおける予備的な結果から, (i) テストデータセットの95.5%の問題を1,000個のサンプルで解決し, (ii) 従来のシンボルプランナーよりも最大13.5%短いプランを作成し, (iii) 計画の可利用性の平均待ち時間を61.4%まで削減する。
論文 参考訳(メタデータ) (2023-03-01T11:54:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。