論文の概要: Efficient LLM-Jailbreaking by Introducing Visual Modality
- arxiv url: http://arxiv.org/abs/2405.20015v1
- Date: Thu, 30 May 2024 12:50:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:28:22.589392
- Title: Efficient LLM-Jailbreaking by Introducing Visual Modality
- Title(参考訳): 視覚的モダリティの導入による効率的なLCMジェイルブレーク
- Authors: Zhenxing Niu, Yuyao Sun, Haodong Ren, Haoxuan Ji, Quan Wang, Xiaoke Ma, Gang Hua, Rong Jin,
- Abstract要約: 本稿では,大規模言語モデル(LLM)に対するジェイルブレイク攻撃に焦点を当てた。
我々のアプローチは、ターゲットのLLMに視覚モジュールを組み込むことで、MLLM(Multimodal large language model)を構築することから始まる。
我々は, EmbJS をテキスト空間に変換し, ターゲット LLM のジェイルブレイクを容易にする。
- 参考スコア(独自算出の注目度): 28.925716670778076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on jailbreaking attacks against large language models (LLMs), eliciting them to generate objectionable content in response to harmful user queries. Unlike previous LLM-jailbreaks that directly orient to LLMs, our approach begins by constructing a multimodal large language model (MLLM) through the incorporation of a visual module into the target LLM. Subsequently, we conduct an efficient MLLM-jailbreak to generate jailbreaking embeddings embJS. Finally, we convert the embJS into text space to facilitate the jailbreaking of the target LLM. Compared to direct LLM-jailbreaking, our approach is more efficient, as MLLMs are more vulnerable to jailbreaking than pure LLM. Additionally, to improve the attack success rate (ASR) of jailbreaking, we propose an image-text semantic matching scheme to identify a suitable initial input. Extensive experiments demonstrate that our approach surpasses current state-of-the-art methods in terms of both efficiency and effectiveness. Moreover, our approach exhibits superior cross-class jailbreaking capabilities.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)に対するジェイルブレイク攻撃に着目し,有害なユーザクエリに応答して,敵対的なコンテンツを生成する。
LLM に直接指向する以前の LLM-jailbreak とは異なり、我々のアプローチは、ターゲット LLM に視覚モジュールを組み込むことで、マルチモーダルな大規模言語モデル (MLLM) を構築することから始まる。
その後,効率的なMLLMジェイルブレイクを行い,jailbreaking embeddings embJSを生成した。
最後に, EmbJS をテキスト空間に変換し, ターゲット LLM のジェイルブレイクを容易にする。
直接的LLMジェイルブレイクに比べ、MLLMは純粋なLLMよりもジェイルブレイクに弱いため、我々のアプローチはより効率的である。
さらに、ジェイルブレイクの攻撃成功率(ASR)を改善するために、適切な初期入力を特定するための画像テキスト意味マッチングスキームを提案する。
大規模な実験により,本手法は効率と有効性の両方の観点から,現在の最先端手法を超越していることが示された。
さらに,本手法は,クラス間のジェイルブレイク能力に優れる。
関連論文リスト
- Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
そこで本稿では, ガーブレッドの逆数プロンプトを, 一貫性のある, 可読性のある自然言語の逆数プロンプトに"翻訳"する手法を提案する。
また、jailbreakプロンプトの効果的な設計を発見し、jailbreak攻撃の理解を深めるための新しいアプローチも提供する。
本稿では,AdvBench上でのLlama-2-Chatモデルに対する攻撃成功率は90%以上である。
論文 参考訳(メタデータ) (2024-10-15T06:31:04Z) - Unlocking Adversarial Suffix Optimization Without Affirmative Phrases: Efficient Black-box Jailbreaking via LLM as Optimizer [33.67942887761857]
最適化可能な接尾辞を用いた新規かつ効率的なブラックボックスジェイルブレイク法であるELIPSEを提案する。
我々は,Jailbreakの目標を自然言語命令に変換するタスクプロンプトを用いて,悪意のあるクエリに対する逆接接尾辞を生成する。
ECLIPSE は3つのオープンソース LLM と GPT-3.5-Turbo に対して平均攻撃成功率 0.92 を達成し、GCG を2.4倍に上回っている。
論文 参考訳(メタデータ) (2024-08-21T03:35:24Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - ObscurePrompt: Jailbreaking Large Language Models via Obscure Input [32.00508793605316]
本稿では,LLMをジェイルブレイクするための単純で斬新な手法であるObscurePromptを紹介する。
まず、脱獄過程における決定境界を定式化し、次にLLMの倫理的決定境界に不明瞭な文章がどう影響するかを考察する。
本手法は,2つの防御機構に対する有効性を保ちながら,攻撃効果の観点から従来の手法を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-19T16:09:58Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
大規模言語モデル(LLM)は、広範囲の現実世界のアプリケーションで採用されつつある。
近年の研究では、LSMは故意に構築された敵のプロンプトに弱いことが示されている。
そこで本研究では,新しい防衛手法である textbfLayer-specific textbfEditing (LED) を提案する。
論文 参考訳(メタデータ) (2024-05-28T13:26:12Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
大規模言語モデルの自動レッドチーム化のための新しいブラックボックスジェイルブレイクフレームワークを提案する。
我々は、Jailbreak LLMに対する反復最適化アルゴリズムを用いて、悪意のあるコンテンツの隠蔽とメモリリフレーミングを設計した。
論文 参考訳(メタデータ) (2024-03-13T11:16:43Z) - Jailbreaking Attack against Multimodal Large Language Model [69.52466793164618]
本稿では,マルチモーダル大規模言語モデル(MLLM)に対するジェイルブレイク攻撃に焦点を当てた。
imgJP (emphimage Jailbreaking Prompt) の探索手法を提案する。
提案手法は, 生成したimgJPをジェイルブレイクモデルに転送できるため, 強いモデル伝達性を示す。
論文 参考訳(メタデータ) (2024-02-04T01:29:24Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。