論文の概要: Near Optimal Decentralized Optimization with Compression and Momentum Tracking
- arxiv url: http://arxiv.org/abs/2405.20114v1
- Date: Thu, 30 May 2024 14:51:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 13:58:47.038929
- Title: Near Optimal Decentralized Optimization with Compression and Momentum Tracking
- Title(参考訳): 圧縮とモーメントトラッキングによる最適分散最適化
- Authors: Rustem Islamov, Yuan Gao, Sebastian U. Stich,
- Abstract要約: MoTEFは,Momentum Tracking と Error Feedback との通信を統合する新しい手法である。
我々の分析は、MoTEFが所望のプロパティの大部分と、データの下でかなり既存のメソッドを統合することを実証している。
- 参考スコア(独自算出の注目度): 27.484212303346816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Communication efficiency has garnered significant attention as it is considered the main bottleneck for large-scale decentralized Machine Learning applications in distributed and federated settings. In this regime, clients are restricted to transmitting small amounts of quantized information to their neighbors over a communication graph. Numerous endeavors have been made to address this challenging problem by developing algorithms with compressed communication for decentralized non-convex optimization problems. Despite considerable efforts, the current results suffer from various issues such as non-scalability with the number of clients, requirements for large batches, or bounded gradient assumption. In this paper, we introduce MoTEF, a novel approach that integrates communication compression with Momentum Tracking and Error Feedback. Our analysis demonstrates that MoTEF achieves most of the desired properties, and significantly outperforms existing methods under arbitrary data heterogeneity. We provide numerical experiments to validate our theoretical findings and confirm the practical superiority of MoTEF.
- Abstract(参考訳): 分散およびフェデレートされた設定における大規模分散機械学習アプリケーションの主なボトルネックと考えられているため、通信効率に大きな注目を集めている。
この体制では、クライアントは通信グラフを介して少量の量子化された情報を隣人に送信することに制限される。
分散化された非凸最適化問題に対する圧縮通信を用いたアルゴリズムを開発することで、この問題に多くの取り組みがなされている。
かなりの努力にもかかわらず、現在の結果は、クライアント数での非スケーリング性、大規模なバッチの要件、境界勾配の仮定など、さまざまな問題に悩まされている。
本稿では,モメンタムトラッキングやエラーフィードバックと通信圧縮を統合した新しい手法であるMoTEFを紹介する。
分析の結果,MoTEFは所望の特性のほとんどを達成し,任意のデータ不均一性の下で既存手法よりも大幅に優れていることがわかった。
理論的知見を検証し,MoTEFの実用的優位性を確認するための数値実験を行った。
関連論文リスト
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
異常と欠落したデータは、産業応用における厄介な問題を構成する。
ディープラーニングによる異常検出が重要な方向として現れている。
エッジデバイスで収集されたデータは、ユーザのプライバシを含む。
論文 参考訳(メタデータ) (2024-11-06T15:38:31Z) - Boosting the Performance of Decentralized Federated Learning via Catalyst Acceleration [66.43954501171292]
本稿では,Catalytics Accelerationを導入し,DFedCataと呼ばれる促進型分散フェデレート学習アルゴリズムを提案する。
DFedCataは、パラメータの不整合に対処するMoreauエンベロープ関数と、アグリゲーションフェーズを加速するNesterovの外挿ステップの2つの主要コンポーネントで構成されている。
実験により, CIFAR10/100における収束速度と一般化性能の両面において, 提案アルゴリズムの利点を実証した。
論文 参考訳(メタデータ) (2024-10-09T06:17:16Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Asynchronous Federated Learning with Bidirectional Quantized
Communications and Buffered Aggregation [39.057968279167966]
Asynchronous Federated Learning with Buffered Aggregation (FedBuff)は、その効率性と高いスケーラビリティで知られている最先端のアルゴリズムである。
直接量子化によるエラー伝搬を回避するために,サーバとクライアント間で共有された"隠れ"状態を確立する量子化スキームを備えた新しいアルゴリズム(QAFeL)を提案する。
論文 参考訳(メタデータ) (2023-08-01T03:50:58Z) - Federated Compositional Deep AUC Maximization [58.25078060952361]
本研究では,曲線(AUC)のスコアを直接最適化することにより,不均衡なデータに対する新しいフェデレート学習法を開発した。
私たちの知る限りでは、このような好ましい理論的な結果を達成した最初の作品である。
論文 参考訳(メタデータ) (2023-04-20T05:49:41Z) - Communication-Efficient Federated Distillation with Active Data Sampling [6.516631577963641]
フェデレートラーニング(FL)は、分散データからプライバシー保護の深層ラーニングを可能にする、有望なパラダイムである。
フェデレート蒸留(Federated Distillation, FD)は、通信効率とロバストなFLを実現するための代替案である。
本稿では、FDのための汎用メタアルゴリズムを提案し、実験により鍵パラメータの影響について検討する。
本稿では,アクティブデータサンプリングによる通信効率の高いFDアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-14T07:50:55Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
フェデレートラーニング(FL)では、モデルトレーニングはクライアントに分散し、ローカルモデルは中央サーバによって集約される。
本稿では,各クライアントの差分プライバシ(DP)要件だけでなく,全体としてのトレーニング性能に制約された無線チャネル上でのFLトレーニング遅延を最小限に抑えることを目的とする。
論文 参考訳(メタデータ) (2021-06-20T13:51:18Z) - Sample-based and Feature-based Federated Learning via Mini-batch SSCA [18.11773963976481]
本稿ではサンプルベースおよび特徴ベース連合最適化について検討する。
提案アルゴリズムは,モデルアグリゲーション機構を通じてデータプライバシを保持できることを示した。
また,提案アルゴリズムは,各フェデレーション最適化問題のKarush-Kuhn-Tucker点に収束することを示した。
論文 参考訳(メタデータ) (2021-04-13T08:23:46Z) - A Linearly Convergent Algorithm for Decentralized Optimization: Sending
Less Bits for Free! [72.31332210635524]
分散最適化手法は、中央コーディネータを使わずに、機械学習モデルのデバイス上でのトレーニングを可能にする。
ランダム化圧縮演算子を適用し,通信ボトルネックに対処する新しいランダム化一階法を提案する。
本手法は,ベースラインに比べて通信数の増加を伴わずに問題を解くことができることを示す。
論文 参考訳(メタデータ) (2020-11-03T13:35:53Z) - Communication-efficient Variance-reduced Stochastic Gradient Descent [0.0]
通信効率のよい分散最適化の問題を考える。
特に、分散還元勾配に着目し、通信効率を高めるための新しいアプローチを提案する。
実データセットの包括的理論的および数値解析により、我々のアルゴリズムは通信の複雑さを95%減らし、ほとんど顕著なペナルティを伴わないことが明らかとなった。
論文 参考訳(メタデータ) (2020-03-10T13:22:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。