Training-efficient density quantum machine learning
- URL: http://arxiv.org/abs/2405.20237v2
- Date: Fri, 23 May 2025 10:51:37 GMT
- Title: Training-efficient density quantum machine learning
- Authors: Brian Coyle, Snehal Raj, Natansh Mathur, El Amine Cherrat, Nishant Jain, Skander Kazdaghli, Iordanis Kerenidis,
- Abstract summary: We introduce density quantum neural networks, a model family that prepares mixtures of trainable unitaries.<n>This framework balances expressivity and efficient trainability, especially on quantum hardware.
- Score: 2.918930150557355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning (QML) requires powerful, flexible and efficiently trainable models to be successful in solving challenging problems. We introduce density quantum neural networks, a model family that prepares mixtures of trainable unitaries, with a distributional constraint over coefficients. This framework balances expressivity and efficient trainability, especially on quantum hardware. For expressivity, the Hastings-Campbell Mixing lemma converts benefits from linear combination of unitaries into density models with similar performance guarantees but shallower circuits. For trainability, commuting-generator circuits enable density model construction with efficiently extractable gradients. The framework connects to various facets of QML including post-variational and measurement-based learning. In classical settings, density models naturally integrate the mixture of experts formalism, and offer natural overfitting mitigation. The framework is versatile - we uplift several quantum models into density versions to improve model performance, or trainability, or both. These include Hamming weight-preserving and equivariant models, among others. Extensive numerical experiments validate our findings.
Related papers
- LCQNN: Linear Combination of Quantum Neural Networks [7.010027035873597]
We introduce the Linear Combination of Quantum Neural Networks (LCQNN) framework, which uses the linear combination of unitaries concept to create a tunable design.<n>We show how specific structural choices, such as adopting $k$ of control unitaries or restricting the model to certain group-theoretic subspaces, prevent gradients from collapsing.<n>In group action scenarios, we show that by exploiting symmetry and excluding exponentially large irreducible subspaces, the model circumvents barren plateaus.
arXiv Detail & Related papers (2025-07-03T17:43:10Z) - Quantum Knowledge Distillation for Large Language Models [10.023534560183919]
We propose a Quantum knowledge Distillation model for Large Language Models (QD-LLM)<n>In classical simulation, QD-LLM outperforms several mainstream distillation methods on multiple text classification tasks.<n>We deploy the obtained circuits on the Baihua superconducting quantum processor via the Quafu platform to assess practical feasibility.
arXiv Detail & Related papers (2025-05-19T14:56:24Z) - A Materials Foundation Model via Hybrid Invariant-Equivariant Architectures [53.273077346444886]
Machine learning interatomic potentials (MLIPs) can predict energy, force, and stress of materials.<n>A key design choice in MLIPs involves the trade-off between invariant and equivariant architectures.<n>HIENet is a hybrid invariant-equivariant materials interatomic potential model that integrates both invariant and equivariant message passing layers.
arXiv Detail & Related papers (2025-02-25T18:01:05Z) - Quantum Latent Diffusion Models [65.16624577812436]
We propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models.<n>This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space.<n>The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version.
arXiv Detail & Related papers (2025-01-19T21:24:02Z) - Quantum-Train with Tensor Network Mapping Model and Distributed Circuit Ansatz [0.8192907805418583]
Quantum-Train (QT) is a hybrid quantum-classical machine learning framework.
It maps quantum state measurements to classical neural network weights.
Traditional QT framework employs a multi-layer perceptron (MLP) for this task, but it struggles with scalability and interpretability.
We introduce a distributed circuit ansatz designed for large-scale quantum machine learning with multiple small quantum processing unit nodes.
arXiv Detail & Related papers (2024-09-11T03:51:34Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Learning Density Functionals from Noisy Quantum Data [0.0]
noisy intermediate-scale quantum (NISQ) devices are used to generate training data for machine learning (ML) models.
We show that a neural-network ML model can successfully generalize from small datasets subject to noise typical of NISQ algorithms.
Our findings suggest a promising pathway for leveraging NISQ devices in practical quantum simulations.
arXiv Detail & Related papers (2024-09-04T17:59:55Z) - On the relation between trainability and dequantization of variational quantum learning models [1.7999333451993955]
We study the relation between trainability and dequantization of variational quantum machine learning (QML)<n>We introduce recipes for building PQC-based QML models which are both trainable and nondequantizable.<n>Our work however does point toward a way forward for finding more general constructions, for which finding applications may become feasible.
arXiv Detail & Related papers (2024-06-11T08:59:20Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum Neural Network for Quantum Neural Computing [0.0]
We propose a new quantum neural network model for quantum neural computing.
Our model circumvents the problem that the state-space size grows exponentially with the number of neurons.
We benchmark our model for handwritten digit recognition and other nonlinear classification tasks.
arXiv Detail & Related papers (2023-05-15T11:16:47Z) - Quantum HyperNetworks: Training Binary Neural Networks in Quantum
Superposition [16.1356415877484]
We introduce quantum hypernetworks as a mechanism to train binary neural networks on quantum computers.
We show that our approach effectively finds optimal parameters, hyperparameters and architectural choices with high probability on classification problems.
Our unified approach provides an immense scope for other applications in the field of machine learning.
arXiv Detail & Related papers (2023-01-19T20:06:48Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
We study a new vertical-layered representation of neural network weights for encapsulating all quantized models into a single one.
We can theoretically achieve any precision network for on-demand service while only needing to train and maintain one model.
arXiv Detail & Related papers (2022-12-10T15:57:38Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
Generative modeling is a widely accepted natural use case for quantum computers.
We construct a simple and unambiguous approach to probe practical quantum advantage for generative modeling by measuring the algorithm's generalization performance.
Our simulation results show that our quantum-inspired models have up to a $68 times$ enhancement in generating unseen unique and valid samples.
arXiv Detail & Related papers (2022-01-21T16:35:35Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Quantum Annealing Formulation for Binary Neural Networks [40.99969857118534]
In this work, we explore binary neural networks, which are lightweight yet powerful models typically intended for resource constrained devices.
We devise a quadratic unconstrained binary optimization formulation for the training problem.
While the problem is intractable, i.e., the cost to estimate the binary weights scales exponentially with network size, we show how the problem can be optimized directly on a quantum annealer.
arXiv Detail & Related papers (2021-07-05T03:20:54Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z) - The power of quantum neural networks [3.327474729829121]
In the near-term, however, the benefits of quantum machine learning are not so clear.
We use tools from information geometry to define a notion of expressibility for quantum and classical models.
We show that quantum neural networks are able to achieve a significantly better effective dimension than comparable classical neural networks.
arXiv Detail & Related papers (2020-10-30T18:13:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.