論文の概要: Flexible SE(2) graph neural networks with applications to PDE surrogates
- arxiv url: http://arxiv.org/abs/2405.20287v1
- Date: Thu, 30 May 2024 17:39:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 13:09:46.948716
- Title: Flexible SE(2) graph neural networks with applications to PDE surrogates
- Title(参考訳): フレキシブルSE(2)グラフニューラルネットワークとPDEサロゲートへの応用
- Authors: Maria Bånkestad, Olof Mogren, Aleksis Pirinen,
- Abstract要約: 表現を主軸に整合させることで、SE(2) の等式を保ちながら多くの制約を回避できることが示される。
流体流動シミュレーションのサロゲートとして本モデルを適用し,非同変モデルに対して徹底的なベンチマークを行い,データ効率と精度の両面で有意な向上を示した。
- 参考スコア(独自算出の注目度): 3.846765283877487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel approach for constructing graph neural networks equivariant to 2D rotations and translations and leveraging them as PDE surrogates on non-gridded domains. We show that aligning the representations with the principal axis allows us to sidestep many constraints while preserving SE(2) equivariance. By applying our model as a surrogate for fluid flow simulations and conducting thorough benchmarks against non-equivariant models, we demonstrate significant gains in terms of both data efficiency and accuracy.
- Abstract(参考訳): 本稿では,2次元回転と翻訳に同値なグラフニューラルネットワークを構築し,非グリッド領域上のPDE代理として利用するための新しいアプローチを提案する。
表現を主軸に整合させることで、SE(2) の等式を保ちながら多くの制約を回避できることが示される。
流体流動シミュレーションのサロゲートとして本モデルを適用し,非同変モデルに対して徹底的なベンチマークを行い,データ効率と精度の両面で有意な向上を示した。
関連論文リスト
- Derivative-Free Diffusion Manifold-Constrained Gradient for Unified XAI [59.96044730204345]
微分自由拡散多様体制約勾配(FreeMCG)を導入する。
FreeMCGは、与えられたニューラルネットワークの説明可能性を改善する基盤として機能する。
提案手法は,XAIツールが期待する本質性を保ちながら,最先端の成果が得られることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:15:14Z) - High-dimensional Analysis of Knowledge Distillation: Weak-to-Strong Generalization and Scaling Laws [32.61980466814528]
隆起のない高次元回帰のために, このプロセスの鋭い特徴付けを行う。
弱い特徴を捨てることの利点と限界を明らかにする最適代理モデルの形式を同定する。
我々は、リッジレス回帰とニューラルネットワークアーキテクチャの両方に関する数値実験の結果を検証する。
論文 参考訳(メタデータ) (2024-10-24T15:22:53Z) - AROMA: Preserving Spatial Structure for Latent PDE Modeling with Local Neural Fields [14.219495227765671]
本稿では、局所的なニューラルネットワークを用いた偏微分方程式(PDE)のモデリングを強化するためのフレームワークであるAROMAを提案する。
我々のフレキシブルエンコーダ・デコーダアーキテクチャは、様々なデータタイプから空間物理場のスムーズな遅延表現を得ることができる。
拡散型定式化を用いることで、従来のMSEトレーニングと比較して安定性が向上し、ロールアウトが長くなる。
論文 参考訳(メタデータ) (2024-06-04T10:12:09Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - DiffFlow: A Unified SDE Framework for Score-Based Diffusion Models and
Generative Adversarial Networks [41.451880167535776]
我々は、明示的生成モデル(SDM)と生成逆数ネット(GAN)のための統一的理論フレームワークを提案する。
統合理論フレームワークでは,GAN や SDM 以外の新しいアルゴリズムを精度の高い推定で提供する DiffFLow のインスタンス化がいくつか導入されている。
論文 参考訳(メタデータ) (2023-07-05T10:00:53Z) - Implicit Bayes Adaptation: A Collaborative Transport Approach [25.96406219707398]
領域適応は、高次元ユークリッド空間に埋め込まれた非線型部分多様体に本質的に横たわる各データの固有表現に根付いていることを示す。
これは暗黙のベイズ的フレームワークに準じるものであり、ドメイン適応に対するより堅牢で優れたパフォーマンスのアプローチで実現可能であることを示す。
論文 参考訳(メタデータ) (2023-04-17T14:13:40Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Surrogate and inverse modeling for two-phase flow in porous media via
theory-guided convolutional neural network [0.0]
理論誘導畳み込みニューラルネットワーク(TgCNN)フレームワークは、二相多孔質媒体フロー問題に拡張される。
検討された2つの主変数である圧力と飽和は2つのCNNと同時に近似される。
TgCNNサロゲートは二相流問題において通常のCNNサロゲートよりも精度が高い。
論文 参考訳(メタデータ) (2021-10-12T14:52:37Z) - Hyperbolic Variational Graph Neural Network for Modeling Dynamic Graphs [77.33781731432163]
我々は,ノード表現の推論を目的とした双曲空間における動的グラフ表現を初めて学習する。
本稿では,HVGNNと呼ばれる新しいハイパーボリック変動グラフネットワークを提案する。
特に,動力学をモデル化するために,理論的に接地した時間符号化手法に基づく時間gnn(tgnn)を導入する。
論文 参考訳(メタデータ) (2021-04-06T01:44:15Z) - E(n) Equivariant Graph Neural Networks [86.75170631724548]
本稿では,E(n)-Equivariant Graph Neural Networks (EGNNs) と呼ばれる回転,翻訳,反射,置換に等価なグラフニューラルネットワークを学習する新しいモデルを提案する。
既存の手法とは対照的に、私たちの仕事は計算的に高価な中間層における高階表現を必要としません。
論文 参考訳(メタデータ) (2021-02-19T10:25:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。