STHN: Deep Homography Estimation for UAV Thermal Geo-localization with Satellite Imagery
- URL: http://arxiv.org/abs/2405.20470v2
- Date: Mon, 19 Aug 2024 18:06:48 GMT
- Title: STHN: Deep Homography Estimation for UAV Thermal Geo-localization with Satellite Imagery
- Authors: Jiuhong Xiao, Ning Zhang, Daniel Tortei, Giuseppe Loianno,
- Abstract summary: We introduce a novel UAV thermal geo-localization approach that employs a coarse-to-fine deep homography estimation method.
This method attains reliable thermal geo-localization within a 512-meter radius of the UAV's last known location.
- Score: 14.651828898850892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate geo-localization of Unmanned Aerial Vehicles (UAVs) is crucial for outdoor applications including search and rescue operations, power line inspections, and environmental monitoring. The vulnerability of Global Navigation Satellite Systems (GNSS) signals to interference and spoofing necessitates the development of additional robust localization methods for autonomous navigation. Visual Geo-localization (VG), leveraging onboard cameras and reference satellite maps, offers a promising solution for absolute localization. Specifically, Thermal Geo-localization (TG), which relies on image-based matching between thermal imagery with satellite databases, stands out by utilizing infrared cameras for effective nighttime localization. However, the efficiency and effectiveness of current TG approaches, are hindered by dense sampling on satellite maps and geometric noises in thermal query images. To overcome these challenges, we introduce STHN, a novel UAV thermal geo-localization approach that employs a coarse-to-fine deep homography estimation method. This method attains reliable thermal geo-localization within a 512-meter radius of the UAV's last known location even with a challenging 11\% size ratio between thermal and satellite images, despite the presence of indistinct textures and self-similar patterns. We further show how our research significantly enhances UAV thermal geo-localization performance and robustness against geometric noises under low-visibility conditions in the wild. The code is made publicly available.
Related papers
- Weakly-supervised Camera Localization by Ground-to-satellite Image Registration [52.54992898069471]
We propose a weakly supervised learning strategy for ground-to-satellite image registration.
It derives positive and negative satellite images for each ground image.
We also propose a self-supervision strategy for cross-view image relative rotation estimation.
arXiv Detail & Related papers (2024-09-10T12:57:16Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
This paper proposes a fine-grained self-localization method for outdoor robotics.
The proposed method addresses limitations in existing cross-view localization methods.
It is the first sparse visual-only method that enhances perception in dynamic environments.
arXiv Detail & Related papers (2023-08-16T02:51:52Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Long-range UAV Thermal Geo-localization with Satellite Imagery [3.427912625787135]
This paper proposes a novel thermal geo-localization framework using satellite RGB imagery.
It includes multiple domain adaptation methods to address the limited availability of paired thermal and satellite images.
To the best of our knowledge, this work is the first to propose a thermal geo-localization method using satellite RGB imagery in long-range flights.
arXiv Detail & Related papers (2023-06-05T16:05:57Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
We address the problem of geo-pose estimation by cross-view matching of query ground images to a geo-referenced aerial satellite image database.
We propose a new transformer neural network-based model and a modified triplet ranking loss for joint location and orientation estimation.
Experiments on several benchmark cross-view geo-localization datasets show that our model achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-03-28T01:58:03Z) - A Gis Aided Approach for Geolocalizing an Unmanned Aerial System Using
Deep Learning [0.4297070083645048]
We propose an alternative approach to geolocalize a UAS when GPS signal is degraded or denied.
Considering UAS has a downward-looking camera on its platform that can acquire real-time images as the platform flies, we apply modern deep learning techniques to achieve geolocalization.
We extract GIS information from OpenStreetMap (OSM) to semantically segment matched features into building and terrain classes.
arXiv Detail & Related papers (2022-08-25T17:51:15Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - City-wide Street-to-Satellite Image Geolocalization of a Mobile Ground
Agent [38.140216125792755]
Cross-view image geolocalization provides an estimate of an agent's global position by matching a local ground image to an overhead satellite image without the need for GPS.
Our approach, called Wide-Area Geolocalization (WAG), combines a neural network with a particle filter to achieve global position estimates for agents moving in GPS-denied environments.
WAG achieves position estimation accuracies on the order of 20 meters, a 98% reduction compared to a baseline training and weighting approach.
arXiv Detail & Related papers (2022-03-10T19:54:12Z) - Continuous Self-Localization on Aerial Images Using Visual and Lidar
Sensors [25.87104194833264]
We propose a novel method for geo-tracking in outdoor environments by registering a vehicle's sensor information with aerial imagery of an unseen target region.
We train a model in a metric learning setting to extract visual features from ground and aerial images.
Our method is the first to utilize on-board cameras in an end-to-end differentiable model for metric self-localization on unseen orthophotos.
arXiv Detail & Related papers (2022-03-07T12:25:44Z) - Exploring Thermal Images for Object Detection in Underexposure Regions
for Autonomous Driving [67.69430435482127]
Underexposure regions are vital to construct a complete perception of the surroundings for safe autonomous driving.
The availability of thermal cameras has provided an essential alternate to explore regions where other optical sensors lack in capturing interpretable signals.
This work proposes a domain adaptation framework which employs a style transfer technique for transfer learning from visible spectrum images to thermal images.
arXiv Detail & Related papers (2020-06-01T09:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.