論文の概要: Physically Compatible 3D Object Modeling from a Single Image
- arxiv url: http://arxiv.org/abs/2405.20510v2
- Date: Mon, 3 Jun 2024 22:34:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 10:40:04.654765
- Title: Physically Compatible 3D Object Modeling from a Single Image
- Title(参考訳): 単一画像からの物理的に適合する3次元物体モデリング
- Authors: Minghao Guo, Bohan Wang, Pingchuan Ma, Tianyuan Zhang, Crystal Elaine Owens, Chuang Gan, Joshua B. Tenenbaum, Kaiming He, Wojciech Matusik,
- Abstract要約: 単一画像を3次元物理オブジェクトに変換するフレームワークを提案する。
我々のフレームワークは、リコンストラクションプロセスに物理的な互換性を組み込む。
既存の手法よりも3Dモデルの物理的リアリズムを一貫して強化する。
- 参考スコア(独自算出の注目度): 109.98124149566927
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present a computational framework that transforms single images into 3D physical objects. The visual geometry of a physical object in an image is determined by three orthogonal attributes: mechanical properties, external forces, and rest-shape geometry. Existing single-view 3D reconstruction methods often overlook this underlying composition, presuming rigidity or neglecting external forces. Consequently, the reconstructed objects fail to withstand real-world physical forces, resulting in instability or undesirable deformation -- diverging from their intended designs as depicted in the image. Our optimization framework addresses this by embedding physical compatibility into the reconstruction process. We explicitly decompose the three physical attributes and link them through static equilibrium, which serves as a hard constraint, ensuring that the optimized physical shapes exhibit desired physical behaviors. Evaluations on a dataset collected from Objaverse demonstrate that our framework consistently enhances the physical realism of 3D models over existing methods. The utility of our framework extends to practical applications in dynamic simulations and 3D printing, where adherence to physical compatibility is paramount.
- Abstract(参考訳): 単一画像を3次元物理オブジェクトに変換する計算フレームワークを提案する。
画像中の物体の視覚的幾何学は、機械的特性、外部力、静止形状の3つの直交特性によって決定される。
既存の1次元の3D再構成手法は、剛性や外力の無視を前提として、しばしばこの基礎となる構成を見落としている。
その結果、再構成された物体は現実世界の物理的力に耐えられず、不安定または望ましくない変形をもたらす。
我々の最適化フレームワークは、物理互換性を再構築プロセスに埋め込むことによって、この問題に対処する。
3つの物理的属性を明示的に分解し、静的平衡によってリンクし、これはハード制約として機能し、最適化された物理的形状が望ましい物理的挙動を示すことを保証する。
Objaverseから収集したデータセットの評価は、我々のフレームワークが既存の手法よりも連続的に3Dモデルの物理的現実性を高めることを示した。
我々のフレームワークの実用性は、動的シミュレーションや3Dプリンティングにおける実践的な応用にまで拡張され、物理的互換性への固執が最重要である。
関連論文リスト
- PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
物理シミュレーションの原理を取り入れた新しいフレームワークであるPhysMotionを導入し,1つの画像から生成された中間3次元表現をガイドする。
我々のアプローチは、従来のデータ駆動生成モデルの限界に対処し、より一貫した物理的に妥当な動きをもたらす。
論文 参考訳(メタデータ) (2024-11-26T07:59:11Z) - PhysPart: Physically Plausible Part Completion for Interactable Objects [28.91080122885566]
我々は、相互作用可能なオブジェクトに対する物理的に妥当な部分補完の問題に取り組む。
幾何学的条件付けを利用した拡散型部分生成モデルを提案する。
また、3Dプリンティング、ロボット操作、シーケンシャル部分生成にも応用しています。
論文 参考訳(メタデータ) (2024-08-25T04:56:09Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
ビデオ拡散モデルを用いて3Dオブジェクトの様々な物理的特性を学習する新しい手法である textbfPhysics3D を提案する。
本手法では,粘弾性材料モデルに基づく高一般化物理シミュレーションシステムを設計する。
弾性材料とプラスチック材料の両方を用いて, 本手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-06-06T17:59:47Z) - Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication [50.541882834405946]
我々は,テキストから3Dへの自動的実装であるAtlas3Dを紹介する。
提案手法は,新しい微分可能シミュレーションに基づく損失関数と,物理的にインスパイアされた正規化を組み合わせたものである。
我々は、Atlas3Dの有効性を広範囲な生成タスクを通して検証し、シミュレーションと実環境の両方で結果の3Dモデルを検証する。
論文 参考訳(メタデータ) (2024-05-28T18:33:18Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - Fixing Malfunctional Objects With Learned Physical Simulation and
Functional Prediction [158.74130075865835]
機能不全な3Dオブジェクトが与えられたら、人間はその機能を推論し、どのように修正するかを理解するために精神シミュレーションを行うことができる。
人間の心的シミュレーションプロセスの模倣として,知覚と物理力学をシームレスに組み込んだ新しいフレームワークであるFixNetを提案する。
論文 参考訳(メタデータ) (2022-05-05T17:59:36Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) 法では、単一の単眼RGBカメラから3次元表面の変形を推定する。
本稿では,物理シミュレーションによる2次元観察を解説する新しいSfT手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T17:59:57Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
本研究では,1枚の画像から3次元空間における物体の変動を再現する微粒な物体認識のための新しいフレームワークを提案する。
我々は,物体を3次元形状とその外観の合成として表現し,カメラ視点の影響を排除した。
深部表現に3次元形状と外観を併用することにより,物体の識別表現を学習する。
論文 参考訳(メタデータ) (2021-08-10T12:19:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。