Generation of subnatural-linewidth orbital angular momentum entangled biphotons using a single driving laser in hot atoms
- URL: http://arxiv.org/abs/2405.20570v1
- Date: Fri, 31 May 2024 01:46:55 GMT
- Title: Generation of subnatural-linewidth orbital angular momentum entangled biphotons using a single driving laser in hot atoms
- Authors: Jiaheng Ma, Chengyuan Wang, Bingbing Li, Yun Chen, Ye Yang, Jinwen Wang, Xin Yang, Shuwei Qiu, Hong Gao, Fuli Li,
- Abstract summary: Orbital angular momentum (OAM) entangled photon pairs play a crucial role in the interaction of light and quantum states of matter.
We demonstrate an approach for generating OAM entangled photon pairs with a narrow bandwidth by using a single driving beam in a $85$Rb atomic vapor cell.
- Score: 11.01118215598991
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Orbital angular momentum (OAM) entangled photon pairs with narrow bandwidths play a crucial role in the interaction of light and quantum states of matter. In this article, we demonstrate an approach for generating OAM entangled photon pairs with a narrow bandwidth by using a single driving beam in a $^{85}$Rb atomic vapor cell. This single driving beam is able to simultaneously couple two atomic transitions and directly generate OAM entangled biphotons by leveraging the OAM conservation law through the spontaneous four-wave mixing (SFWM) process. The photon pairs exhibit a maximum cross-correlation function value of 27.7 and a linewidth of 4 MHz. The OAM entanglement is confirmed through quantum state tomography, revealing a fidelity of 95.7\% and a concurrence of 0.926 when compared to the maximally entangled state. Our scheme is notably simpler than previously proposed schemes and represents the first demonstration of generating subnatural-linewidth entangled photon pairs in hot atomic systems.
Related papers
- Generating entangled pairs of vortex photons via induced emission [0.0]
Pairs of entangled vortex photons can promise new prospects of application in quantum computing and cryptography.
We investigate the possibility of generating such states via two-level atom emission stimulated by a single photon wave packet.
We conclude that induced emission can be used as a source of entangled vortex photons with applications in atomic physics experiments, quantum optics, and quantum information sciences.
arXiv Detail & Related papers (2024-11-21T14:10:50Z) - Realisation of a Coherent and Efficient One-Dimensional Atom [0.15274583259797847]
A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates.
Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom.
Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
arXiv Detail & Related papers (2024-02-19T21:48:12Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Quantum density matrix theory for a laser without adiabatic elimination
of the population inversion: transition to lasing in the class-B limit [62.997667081978825]
No class-B quantum density-matrix model is available to date, capable of accurately describing coherence and photon correlations within a unified theory.
Here we carry out a density-matrix theoretical approach for generic class-B lasers, and provide closed equations for the photonic and atomic reduced density matrix in the Fock basis of photons.
This model enables the study of few-photon bifurcations and non-classical photon correlations in class-B laser devices, also leveraging quantum descriptions of coherently coupled nanolaser arrays.
arXiv Detail & Related papers (2022-05-26T16:33:51Z) - Almost indistinguishable single photons via multiplexing cascaded
biphotons with cavity modulation and phase compensation [0.0]
We study the frequency entanglement of a biphoton generated from alkali metal atomic ensembles.
The purity of single photon reaches up to $0.999$ and the entanglement entropy $S$ of the biphoton reduces to $0.006$.
An extremely low frequency entanglement implies an almost indistinguishable single photon source.
arXiv Detail & Related papers (2022-01-26T15:34:26Z) - Bright multiplexed source of indistinguishable single photons with
tunable GHz-bandwidth at room temperature [0.0]
We realize a spatially-multiplexed heralded source of single photons that are inherently compatible with the commonly employed D2 line of rubidium.
Our source is based on four-wave mixing in hot rubidium vapor, requiring no laser cooling or optical cavities, and generates single photons with high rate and low noise.
arXiv Detail & Related papers (2021-04-19T14:23:33Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Generation of sub-MHz and spectrally-bright biphotons from hot atomic
vapors with a phase mismatch-free scheme [1.8640137420505116]
We generate biphotons from a hot atomic vapor using an all-copropagating scheme.
The biphoton linewidth in this work is tunable for an order of magnitude.
This is the narrowest linewidth to date, among all the various kinds of single-mode biphotons.
arXiv Detail & Related papers (2020-12-09T07:32:56Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.