論文の概要: Unveiling the Lexical Sensitivity of LLMs: Combinatorial Optimization for Prompt Enhancement
- arxiv url: http://arxiv.org/abs/2405.20701v1
- Date: Fri, 31 May 2024 08:53:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:57:18.190083
- Title: Unveiling the Lexical Sensitivity of LLMs: Combinatorial Optimization for Prompt Enhancement
- Title(参考訳): LLMの語彙感度を明らかにする:プロンプト強化のための組合せ最適化
- Authors: Pengwei Zhan, Zhen Xu, Qian Tan, Jie Song, Ru Xie,
- Abstract要約: 大規模言語モデル(LLM)は,タスク命令の語彙変化に対して過敏であることを示す。
プロンプト語彙強調(COPLE)のためのブラックボックス組合せ最適化フレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.363521189714504
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) demonstrate exceptional instruct-following ability to complete various downstream tasks. Although this impressive ability makes LLMs flexible task solvers, their performance in solving tasks also heavily relies on instructions. In this paper, we reveal that LLMs are over-sensitive to lexical variations in task instructions, even when the variations are imperceptible to humans. By providing models with neighborhood instructions, which are closely situated in the latent representation space and differ by only one semantically similar word, the performance on downstream tasks can be vastly different. Following this property, we propose a black-box Combinatorial Optimization framework for Prompt Lexical Enhancement (COPLE). COPLE performs iterative lexical optimization according to the feedback from a batch of proxy tasks, using a search strategy related to word influence. Experiments show that even widely-used human-crafted prompts for current benchmarks suffer from the lexical sensitivity of models, and COPLE recovers the declined model ability in both instruct-following and solving downstream tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な下流タスクを完了させる命令追従能力を示す。
この素晴らしい能力により、LSMはフレキシブルなタスクソルバを実現するが、タスク解決のパフォーマンスも命令に大きく依存する。
本稿では,LLMが人間に受容できない場合であっても,タスク命令の語彙的変化に対して過度に敏感であることを明らかにする。
潜在表現空間に密接な位置にあり、1つの意味論的に類似した単語によって異なる近傍命令を持つモデルを提供することで、下流タスクのパフォーマンスは大きく異なることができる。
そこで本研究では,Pmpt Lexical Enhancement (COPLE) のためのブラックボックスコンビネーション最適化フレームワークを提案する。
COPLEは、単語の影響に関する探索戦略を用いて、プロキシタスクのバッチからのフィードバックに応じて反復的な語彙最適化を行う。
実験によると、現在のベンチマークで広く使われている人為的なプロンプトでさえ、モデルの語彙的感度に悩まされており、COPLEはインストラクション追従と下流タスクの解決の両方において、モデル能力の低下を回復する。
関連論文リスト
- MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - Contrastive Instruction Tuning [61.97704869248903]
意味論的に等価な命令-インスタンスペア間の類似性を最大化するために、コントラスト命令チューニングを提案する。
PromptBenchベンチマークの実験によると、CoINはLLMの頑健さを一貫して改善し、文字、単語、文、意味のレベルを平均して2.5%の精度で変化させる。
論文 参考訳(メタデータ) (2024-02-17T00:09:32Z) - Can LLMs perform structured graph reasoning? [4.676784872259775]
LLM(Pretrained Large Language Models)は、言語ベースのプロンプトだけで様々な推論能力を示す。
本稿では,半構造化タスクのプロキシとして,様々なグラフ推論タスクを設計する。
上記の課題に対して,5種類のインストラクト微細化LDM (GPT-4, GPT-3.5, Claude-2, Llama-2, Palm-2) をベンチマークした。
論文 参考訳(メタデータ) (2024-02-02T09:45:33Z) - INTERS: Unlocking the Power of Large Language Models in Search with Instruction Tuning [59.07490387145391]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて印象的な機能を示している。
情報検索(IR)タスクへのそれらの適用は、自然言語における多くのIR固有の概念の頻繁な発生のため、いまだに困難である。
我々は,3つの基本IRカテゴリにまたがる20のタスクを含む新しいインストラクションチューニングデータセット InterS を導入する。
論文 参考訳(メタデータ) (2024-01-12T12:10:28Z) - Explanation-aware Soft Ensemble Empowers Large Language Model In-context
Learning [50.00090601424348]
大規模言語モデル(LLM)は、様々な自然言語理解タスクにおいて顕著な能力を示している。
我々は,LLMを用いたテキスト内学習を支援するための説明型ソフトアンサンブルフレームワークであるEASEを提案する。
論文 参考訳(メタデータ) (2023-11-13T06:13:38Z) - The language of prompting: What linguistic properties make a prompt
successful? [13.034603322224548]
LLMは、多くのNLPタスクにおいて、印象的なゼロショットまたは少数ショットのパフォーマンスを達成するよう促すことができる。
しかし、プロンプトの言語的特性がタスクのパフォーマンスとどのように関連しているかについての体系的な理解はいまだに欠けている。
モーメント,テンション,アスペクト,モダリティなどの文法的性質と,同義語の使用による語彙・意味の変化について検討する。
論文 参考訳(メタデータ) (2023-11-03T15:03:36Z) - Language Models as Knowledge Bases for Visual Word Sense Disambiguation [1.8591405259852054]
本稿では,視覚言語変換器(VL)の検索性能向上のための知識向上手法を提案する。
より具体的には、LLM(Large Language Models)に格納された知識は、ゼロショット方式で適切なプロンプトの助けを借りて検索される。
提案手法は,LLMに格納された知識を視覚的単語センスの曖昧さを解決するために,様々な方法で活用する最初の方法である。
論文 参考訳(メタデータ) (2023-10-03T11:11:55Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。