論文の概要: Contrastive Instruction Tuning
- arxiv url: http://arxiv.org/abs/2402.11138v2
- Date: Thu, 6 Jun 2024 06:03:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 23:30:46.919268
- Title: Contrastive Instruction Tuning
- Title(参考訳): コントラストインストラクションチューニング
- Authors: Tianyi Lorena Yan, Fei Wang, James Y. Huang, Wenxuan Zhou, Fan Yin, Aram Galstyan, Wenpeng Yin, Muhao Chen,
- Abstract要約: 意味論的に等価な命令-インスタンスペア間の類似性を最大化するために、コントラスト命令チューニングを提案する。
PromptBenchベンチマークの実験によると、CoINはLLMの頑健さを一貫して改善し、文字、単語、文、意味のレベルを平均して2.5%の精度で変化させる。
- 参考スコア(独自算出の注目度): 61.97704869248903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction tuning has been used as a promising approach to improve the performance of large language models (LLMs) on unseen tasks. However, current LLMs exhibit limited robustness to unseen instructions, generating inconsistent outputs when the same instruction is phrased with slightly varied forms or language styles. This behavior indicates LLMs' lack of robustness to textual variations and generalizability to unseen instructions, potentially leading to trustworthiness issues. Accordingly, we propose Contrastive Instruction Tuning, which maximizes the similarity between the hidden representations of semantically equivalent instruction-instance pairs while minimizing the similarity between semantically different ones. To facilitate this approach, we augment the existing FLAN collection by paraphrasing task instructions. Experiments on the PromptBench benchmark show that CoIN consistently improves LLMs' robustness to unseen instructions with variations across character, word, sentence, and semantic levels by an average of +2.5% in accuracy. Code is available at https://github.com/luka-group/CoIN.
- Abstract(参考訳): インストラクションチューニングは、目に見えないタスクにおいて大きな言語モデル(LLM)の性能を改善するための有望なアプローチとして使われてきた。
しかし、現在のLLMは、未確認の命令に対して限られた堅牢性を示し、同じ命令がわずかに異なる形式や言語スタイルで表現されたときに、一貫性のない出力を生成する。
この行動は、LLMのテキストのバリエーションに対する堅牢性の欠如と、見つからない命令に対する一般化性を示しており、信頼性の問題につながる可能性がある。
そこで本研究では,意味的に等価な命令-インスタンスペアの隠れ表現間の類似性を最大化し,意味的に異なる命令間の類似性を最小化するContrastive Instruction Tuningを提案する。
このアプローチを容易にするために,タスク命令を言い換えることで既存のFLANコレクションを増強する。
PromptBenchベンチマークの実験によると、CoINはLLMの頑健さを一貫して改善し、文字、単語、文、意味のレベルを平均して2.5%の精度で変化させる。
コードはhttps://github.com/luka-group/CoIN.comで入手できる。
関連論文リスト
- What Did I Do Wrong? Quantifying LLMs' Sensitivity and Consistency to Prompt Engineering [8.019873464066308]
分類タスク,すなわち感度と一貫性の2つの指標を導入する。
感度はプロンプトの 言い換えによる予測の変化を測る
その代わり、一貫性は、同じクラスの要素の言い換えで予測がどのように変化するかを測定する。
論文 参考訳(メタデータ) (2024-06-18T06:59:24Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
複雑な命令を単純なサブコンポーネントに分解し、それらを修正し、それらを新しい変種に再構成する手法を導入する。
DeMoReconに基づくFGIVデータセットは,1,773個のシード命令の微粒化を含む。
以上の結果から,FGIVを微調整したLDMは,命令追従ベンチマークと一般的な命令追従ベンチマークの両方において,大幅な性能向上が期待できることがわかった。
論文 参考訳(メタデータ) (2024-06-17T08:08:11Z) - Set-Based Prompting: Provably Solving the Language Model Order Dependency Problem [18.020492646988746]
本稿では,LLMの出力が指定されたサブシーケンスのセットに順序依存しないことを保証する手法であるSet-Based Promptingを提案する。
我々の入力が分布外であるにもかかわらず、期待される精度への影響は小さく、予測は、一様に選択された応答のシャッフルの順序を超える。
論文 参考訳(メタデータ) (2024-06-04T16:09:13Z) - Unveiling the Lexical Sensitivity of LLMs: Combinatorial Optimization for Prompt Enhancement [11.363521189714504]
大規模言語モデル(LLM)は,タスク命令の語彙変化に対して過敏であることを示す。
プロンプト語彙強調(COPLE)のためのブラックボックス組合せ最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-31T08:53:59Z) - Prompt Highlighter: Interactive Control for Multi-Modal LLMs [50.830448437285355]
本研究では,マルチモーダル LLM (LLMs&VLMs) 推論における重要な側面として,明示的な制御可能なテキスト生成を目標とする。
本稿では,新しい推論手法であるPrompt Highlighterを導入し,ユーザが特定のプロンプトスパンをハイライトし,生成中のフォーカスをインタラクティブに制御できるようにする。
推論中、注意重みを通して強調されたトークンでモデルを導くことで、より望ましい出力が得られます。
論文 参考訳(メタデータ) (2023-12-07T13:53:29Z) - From Language Modeling to Instruction Following: Understanding the Behavior Shift in LLMs after Instruction Tuning [63.63840740526497]
そこで本研究では,本質的な変化に着目した事前学習モデルの調整方法について検討する。
次に、事前訓練されたモデルと命令調整されたモデルから導かれた説明を比較することで、命令チューニングの影響について研究する。
この結果から,指導指導の3つの重要な影響が明らかになった。
論文 参考訳(メタデータ) (2023-09-30T21:16:05Z) - Instruction Position Matters in Sequence Generation with Large Language
Models [67.87516654892343]
大規模言語モデル(LLM)は、翻訳や要約といった条件付きシーケンス生成タスクを実行することができる。
入力文の後にタスク命令の位置をシフトさせることにより,LLMの指示追従能力を向上させることを提案する。
論文 参考訳(メタデータ) (2023-08-23T12:36:57Z) - Evaluating the Zero-shot Robustness of Instruction-tuned Language Models [23.488398944358643]
新規な(観測されていない)が適切な命令表現を用いることで、モデル性能は一貫して低下することがわかった。
本稿では,ソフトプロンプトの埋め込みパラメータを導入することで,この問題を軽減するための簡単な手法を提案する。
本手法は命令調整モデルのロバスト性を常に改善することを示す。
論文 参考訳(メタデータ) (2023-06-20T03:48:51Z) - Enhancing Large Language Models Against Inductive Instructions with
Dual-critique Prompting [55.15697111170836]
本稿では,大規模言語モデル(LLM)のテクスト誘導的指示に対する行動を明らかにするとともに,その真しさと有用性を高める。
広範囲な人的・自動的な評価の結果,帰納的命令処理において LLM に共通する脆弱性が発見された。
異なる帰納的スタイルがモデルに同じエラーを識別する能力に影響を及ぼし、基礎となる仮定の複雑さがモデルの性能にも影響を及ぼす。
論文 参考訳(メタデータ) (2023-05-23T06:38:20Z) - Alleviating Over-smoothing for Unsupervised Sentence Representation [96.19497378628594]
本稿では,この問題を緩和するために,SSCL(Self-Contrastive Learning)というシンプルな手法を提案する。
提案手法は非常に単純で,様々な最先端モデルに拡張して,性能向上を図ることができる。
論文 参考訳(メタデータ) (2023-05-09T11:00:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。