論文の概要: OpenTensor: Reproducing Faster Matrix Multiplication Discovering Algorithms
- arxiv url: http://arxiv.org/abs/2405.20748v1
- Date: Fri, 31 May 2024 10:30:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:47:24.339998
- Title: OpenTensor: Reproducing Faster Matrix Multiplication Discovering Algorithms
- Title(参考訳): OpenTensor: 高速マトリックス乗算探索アルゴリズムの再現
- Authors: Yiwen Sun, Wenye Li,
- Abstract要約: OpenTensorはAlphaTensorの再現であり、Deep Reinforcement Learning (DRL) による行列乗算の最先端手法よりも優れた新しいアルゴリズムを発見した。
本稿では,アルゴリズムパイプラインのクリーン化,技術的詳細の明確化,およびトレーニングプロセスの改善について述べる。
- 参考スコア(独自算出の注目度): 6.040379723872135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: OpenTensor is a reproduction of AlphaTensor, which discovered a new algorithm that outperforms the state-of-the-art methods for matrix multiplication by Deep Reinforcement Learning (DRL). While AlphaTensor provides a promising framework for solving scientific problems, it is really hard to reproduce due to the massive tricks and lack of source codes. In this paper, we clean up the algorithm pipeline, clarify the technical details, and make some improvements to the training process. Computational results show that OpenTensor can successfully find efficient matrix multiplication algorithms.
- Abstract(参考訳): OpenTensorはAlphaTensorの再現であり、Deep Reinforcement Learning (DRL) による行列乗算の最先端手法よりも優れた新しいアルゴリズムを発見した。
AlphaTensorは科学的な問題を解決するための有望なフレームワークを提供するが、膨大なトリックとソースコードの欠如のために再生するのは本当に難しい。
本稿では,アルゴリズムパイプラインのクリーン化,技術的詳細の明確化,およびトレーニングプロセスの改善について述べる。
計算結果から,OpenTensorは効率の良い行列乗算アルゴリズムを実現できることが示された。
関連論文リスト
- An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
クラスタ化マルチタスク圧縮センシングは、複数の圧縮センシングタスクを解決する階層モデルである。
このモデルに対する既存の推論アルゴリズムは計算コストが高く、高次元ではうまくスケールしない。
本稿では,これらの共分散行列を明示的に計算する必要をなくし,モデル推論を大幅に高速化するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-30T15:57:14Z) - A fast Multiplicative Updates algorithm for Non-negative Matrix Factorization [2.646309221150203]
本稿では,各サブプロブレムに対してヘッセン行列のより厳密な上界を構築することにより,乗法更新アルゴリズムの改善を提案する。
コンバージェンスはまだ保証されており、我々は実際に合成と実世界の両方のデータセットで、提案したfastMUアルゴリズムが通常の乗算更新アルゴリズムよりも数桁高速であることを示す。
論文 参考訳(メタデータ) (2023-03-31T12:09:36Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED)は多くのコンピュータビジョンアルゴリズムとアプリケーションの中心にある。
本稿では,コンピュータビジョンの応用シナリオに特化したQRベースのED手法を提案する。
論文 参考訳(メタデータ) (2022-07-09T09:14:12Z) - Efficient GPU implementation of randomized SVD and its applications [17.71779625877989]
行列分解は、次元データの圧縮やディープラーニングアルゴリズムなど、機械学習においてユビキタスである。
行列分解の典型的な解は、計算コストと時間を大幅に増大させる複雑さを持つ。
我々は,計算行列分解の計算負担を軽減するために,現代のグラフィカル処理ユニット(GPU)で並列に動作する効率的な処理操作を利用する。
論文 参考訳(メタデータ) (2021-10-05T07:42:41Z) - Fundamental Machine Learning Routines as Quantum Algorithms on a
Superconducting Quantum Computer [0.0]
Harrow-Hassidim-Lloydアルゴリズムは、量子デバイス上の線形方程式のシステムを解くことを目的としている。
本稿では,これらの特徴が完全に一致しない場合のアルゴリズムの性能に関する数値的研究を行う。
論文 参考訳(メタデータ) (2021-09-17T15:22:06Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Second-order Neural Network Training Using Complex-step Directional
Derivative [41.4333906662624]
本稿では,2次ニューラルネットワークトレーニングのための数値アルゴリズムを提案する。
複素ステップ有限差分を用いてヘッセン計算の実践的障害に取り組む。
提案手法は,ディープラーニングと数値最適化のための新しいアルゴリズムを広範囲に導入すると考えられる。
論文 参考訳(メタデータ) (2020-09-15T13:46:57Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
強化学習アルゴリズムは、いくつかのルールの1つに従ってエージェントのパラメータを更新する。
本稿では,更新ルール全体を検出するメタラーニング手法を提案する。
これには、一連の環境と対話することで、"何を予測するか"(例えば、値関数)と"どのように学習するか"の両方が含まれている。
論文 参考訳(メタデータ) (2020-07-17T07:38:39Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
本稿では,ニューラルプログラム誘導の枠組みを強く一般化する効率的なアルゴリズムを学習する問題について検討する。
ニューラルネットワークの入力/出力インターフェースを慎重に設計し、模倣することで、任意の入力サイズに対して正しい結果を生成するモデルを学ぶことができる。
論文 参考訳(メタデータ) (2020-07-07T17:03:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。