論文の概要: An iterated learning model of language change that mixes supervised and unsupervised learning
- arxiv url: http://arxiv.org/abs/2405.20818v1
- Date: Fri, 31 May 2024 14:14:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:27:53.949899
- Title: An iterated learning model of language change that mixes supervised and unsupervised learning
- Title(参考訳): 教師なし学習と教師なし学習を混合した言語変化の反復学習モデル
- Authors: Jack Bunyan, Seth Bullock, Conor Houghton,
- Abstract要約: 反復学習モデルは、教師から生徒に言語が伝達される言語変化のエージェントベースモデルである。
従来のモデルは、人工ニューラルネットワークデコーダを使用して、信号から意味へのエージェントのマッピングを実装していた。
ここでは、デコーダとエンコーダの両方がニューラルネットワークであり、教師なし学習を通じて個別に訓練され、教師なし学習によってオートエンコーダの形で訓練される新しいモデルを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The iterated learning model is an agent-based model of language change in which language is transmitted from a tutor to a pupil which itself becomes a tutor to a new pupil, and so on. Languages that are stable, expressive, and compositional arise spontaneously as a consequence of a language transmission bottleneck. Previous models have implemented an agent's mapping from signals to meanings using an artificial neural network decoder, but have relied on an unrealistic and computationally expensive process of obversion to implement the associated encoder, mapping from meanings to signals. Here, a new model is presented in which both decoder and encoder are neural networks, trained separately through supervised learning, and trained together through unsupervised learning in the form of an autoencoder. This avoids the substantial computational burden entailed in obversion and introduces a mixture of supervised and unsupervised learning as observed during human development.
- Abstract(参考訳): 反復学習モデルは、教師から生徒に言語が伝達されるエージェントベースの言語変化モデルである。
安定で表現力があり、構成的な言語は、言語伝達ボトルネックの結果として自然に発生する。
従来のモデルは、人工知能ニューラルネットワークデコーダを使用して、信号から意味へのマッピングを実装していたが、関連するエンコーダを実装するために、非現実的で計算コストのかかるプロセスに依存していた。
ここでは、デコーダとエンコーダの両方がニューラルネットワークであり、教師なし学習を通じて個別に訓練され、教師なし学習によってオートエンコーダの形で訓練される新しいモデルを示す。
これにより、変形に伴うかなりの計算負担を回避し、人間の発達中に観察される教師なし学習と教師なし学習の混合を導入する。
関連論文リスト
- Meta predictive learning model of languages in neural circuits [2.5690340428649328]
本稿では,予測符号化フレームワークにおける平均場学習モデルを提案する。
我々のモデルでは、ほとんどの接続は学習後に決定論的になる。
本モデルは,脳計算,次点予測,一般知能の関連性を調べるための出発点となる。
論文 参考訳(メタデータ) (2023-09-08T03:58:05Z) - Language-Driven Representation Learning for Robotics [115.93273609767145]
ロボット工学における視覚表現学習の最近の研究は、日々の作業を行う人間の大規模なビデオデータセットから学ぶことの可能性を実証している。
人間のビデオやキャプションから言語による表現学習を行うためのフレームワークを提案する。
我々は、Voltronの言語駆動学習が、特に高レベル制御を必要とするターゲット問題において、先行技術よりも優れていることを発見した。
論文 参考訳(メタデータ) (2023-02-24T17:29:31Z) - Communication Drives the Emergence of Language Universals in Neural
Agents: Evidence from the Word-order/Case-marking Trade-off [3.631024220680066]
ニューラルエージェント言語学習通信フレームワーク(NeLLCom)を提案する。
我々はエージェントに特定のバイアスをハードコーディングすることなく、新しいフレームワークでトレードオフを複製することに成功しました。
論文 参考訳(メタデータ) (2023-01-30T17:22:33Z) - Learning Bidirectional Action-Language Translation with Limited
Supervision and Incongruent Extra Input [14.548576165754804]
Paired Gated Autoencoders(PGAE)モデルを用いて、弱教師付き学習パラダイムをモデル化する。
本稿では,Paired Transformed Autoencoders (PTAE) モデルを提案する。
PTAEは、言語間および行動間翻訳において、かなり高い精度を達成する。
論文 参考訳(メタデータ) (2023-01-09T14:09:09Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
事実的説明は、機械学習の決定を局所的に説明するための手法のクラスである。
本稿では,予測器と対実生成器を組み合わせたモデルアーキテクチャであるVCNet-Variational Counter Netを提案する。
我々はVCNetが予測を生成でき、また、別の最小化問題を解くことなく、反現実的な説明を生成できることを示した。
論文 参考訳(メタデータ) (2022-12-21T08:45:32Z) - Pre-Training a Graph Recurrent Network for Language Representation [34.4554387894105]
本稿では,言語モデルの事前学習のためのグラフリカレントネットワークについて考察し,各シーケンスのグラフ構造を局所的なトークンレベルの通信で構築する。
我々のモデルは、既存の注意に基づくモデルよりもコンテキスト化された特徴冗長性が少なく、より多様な出力を生成することができる。
論文 参考訳(メタデータ) (2022-09-08T14:12:15Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Language Model-Based Paired Variational Autoencoders for Robotic Language Learning [18.851256771007748]
人間の幼児と同様、人工エージェントは環境と対話しながら言語を学ぶことができる。
本稿では,ロボットの動作と言語記述を双方向に結合するニューラルモデルを提案する。
次に, PVAE-BERTを導入し, 事前訓練された大規模言語モデルとモデルを同調する。
論文 参考訳(メタデータ) (2022-01-17T10:05:26Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
動的環境におけるエラー(バックプロップ)のバックプロパゲーションを伴わない行動駆動型生成モデルの学習のための計算フレームワークを提案する。
我々は、まばらな報酬でも機能するインテリジェントエージェントを開発し、推論として計画の認知理論からインスピレーションを得ている。
我々のエージェントの堅牢な性能は、神経推論と学習のためのバックプロップフリーアプローチがゴール指向の行動を促進するという有望な証拠を提供する。
論文 参考訳(メタデータ) (2021-07-10T19:02:27Z) - Reprogramming Language Models for Molecular Representation Learning [65.00999660425731]
本稿では,分子学習タスクのための事前学習言語モデルに対して,辞書学習(R2DL)による表現再プログラミングを提案する。
対比プログラムは、k-SVDソルバを用いて、高密度ソースモデル入力空間(言語データ)とスパースターゲットモデル入力空間(例えば、化学および生物学的分子データ)との間の線形変換を学習する。
R2DLは、ドメイン固有のデータに基づいて訓練されたアート毒性予測モデルの状態によって確立されたベースラインを達成し、限られたトレーニングデータ設定でベースラインを上回る。
論文 参考訳(メタデータ) (2020-12-07T05:50:27Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。