論文の概要: clembench-2024: A Challenging, Dynamic, Complementary, Multilingual Benchmark and Underlying Flexible Framework for LLMs as Multi-Action Agents
- arxiv url: http://arxiv.org/abs/2405.20859v1
- Date: Fri, 31 May 2024 14:43:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:08:24.895804
- Title: clembench-2024: A Challenging, Dynamic, Complementary, Multilingual Benchmark and Underlying Flexible Framework for LLMs as Multi-Action Agents
- Title(参考訳): clembench-2024: マルチアクションエージェントとしてのLLMのための拡張性、動的、補完性、多言語ベンチマークおよび下位フレキシブルフレームワーク
- Authors: Anne Beyer, Kranti Chalamalasetti, Sherzod Hakimov, Brielen Madureira, Philipp Sadler, David Schlangen,
- Abstract要約: 大きな言語モデルは、特定の能力を探索する会話ゲームに"セルフプレイ"するよう促すことができる。
本稿では,このようなゲームプレイ環境を構築するためのフレームワークの1つを取り上げ,その有効性を評価機器として検証する。
- 参考スコア(独自算出の注目度): 19.989503513817095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It has been established in recent work that Large Language Models (LLMs) can be prompted to "self-play" conversational games that probe certain capabilities (general instruction following, strategic goal orientation, language understanding abilities), where the resulting interactive game play can be automatically scored. In this paper, we take one of the proposed frameworks for setting up such game-play environments, and further test its usefulness as an evaluation instrument, along a number of dimensions: We show that it can easily keep up with new developments while avoiding data contamination, we show that the tests implemented within it are not yet saturated (human performance is substantially higher than that of even the best models), and we show that it lends itself to investigating additional questions, such as the impact of the prompting language on performance. We believe that the approach forms a good basis for making decisions on model choice for building applied interactive systems, and perhaps ultimately setting up a closed-loop development environment of system and simulated evaluator.
- Abstract(参考訳): 近年,Large Language Models (LLMs) は,対話型ゲームプレイを自動生成する,特定の能力(一般的な命令従量,戦略的目標指向,言語理解能力)を探索する,対話型ゲームに "セルフプレイ" することができることが確立されている。
本稿では,このようなゲームプレイ環境を構築するためのフレームワークの1つとして,データ汚染を回避しながら,新たな開発に追随できることを示すとともに,その内部で実施されるテストがまだ飽和していないこと(人間のパフォーマンスは,最高のモデルよりもかなり高い)を示し,さらに,学習言語がパフォーマンスに与える影響など追加的な質問の探索に役立てていることを示す。
提案手法は,応用対話型システムの構築においてモデル選択を決定するための適切な基盤となり,最終的にはシステムとシミュレートされた評価器のクローズドループ開発環境を構築することができると考えられる。
関連論文リスト
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
言語モデルの性能の効果的な指標としての可能性を示す。
提案手法は,より優れた性能をもたらすプロンプトの選択と構築のための尺度として,疑似可能性を利用する2つの手法を提案する。
論文 参考訳(メタデータ) (2024-11-12T13:14:09Z) - Revisiting Benchmark and Assessment: An Agent-based Exploratory Dynamic Evaluation Framework for LLMs [29.72874725703848]
従来のQAベンチマークを、より柔軟な"戦略基準"フォーマットに拡張するBenchmark+と、インタラクションプロセスを強化するAccess+という2つの概念を紹介します。
本研究では,これらの概念を検索の強化と強化学習を通じて実装するTestAgentというエージェントベース評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-15T11:20:42Z) - PLAYER*: Enhancing LLM-based Multi-Agent Communication and Interaction in Murder Mystery Games [18.383262467079078]
PLAYER*は,任意のサンプリングベースプランナと質問駆動検索フレームワークを用いて,Murder Mystery Games(MMG)のパス計画を強化する。
エージェントに一連のセンサーを装備することで、PLAYER*は事前に定義された質問を不要にし、エージェントが複雑な社会的相互作用をナビゲートすることを可能にする。
また,複数問合せを用いた定量評価手法を導入し,1,482問問問答対を含むデータセットWellPlayを提案する。
論文 参考訳(メタデータ) (2024-04-26T19:07:30Z) - MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
本稿では,自然言語で表現されたハイレベルなタスクを実行可能なアクションのシーケンスに変換するための,MEIA(Multimodal Embodied Interactive Agent)を提案する。
MEMモジュールは、多様な要件とロボットの能力に基づいて、MEIAが実行可能なアクションプランを生成することを可能にする。
論文 参考訳(メタデータ) (2024-02-01T02:43:20Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
大規模言語モデル(LLM)は自然言語処理の分野で大きな進歩を遂げている。
アプリケーションがマルチエージェント環境に拡張されるにつれ、包括的な評価フレームワークの必要性が高まっている。
この研究は、マルチエージェント設定内でLLMを評価するために特別に設計された新しいベンチマークフレームワークを導入している。
論文 参考訳(メタデータ) (2023-11-14T21:46:27Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Dynamic-SUPERB: Towards A Dynamic, Collaborative, and Comprehensive Instruction-Tuning Benchmark for Speech [107.81472531864195]
テキスト言語モデルは、よく整形された命令が与えられたときに、目に見えないタスクに一般化する際、顕著なゼロショット能力を示している。
ゼロショット方式で複数のタスクを実行するための命令チューニングを活用できるユニバーサル音声モデルを構築するためのベンチマークであるDynamic-SUPERBを提案する。
論文 参考訳(メタデータ) (2023-09-18T06:43:30Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Clembench: Using Game Play to Evaluate Chat-Optimized Language Models as
Conversational Agents [20.202525145391093]
近年の研究では,「言語理解エージェント」の体系的評価手法が提案されている。
制約のあるゲームライクな設定に公開することで、大規模言語モデルを有意義に評価できるだろうか?
概念実証として,現在のチャット最適化LDMがゲームプレイの指示に従うことができる範囲において,5つのインタラクション設定について検討する。
論文 参考訳(メタデータ) (2023-05-22T19:56:10Z) - Is MultiWOZ a Solved Task? An Interactive TOD Evaluation Framework with
User Simulator [37.590563896382456]
タスク指向対話(TOD)システムのための対話型評価フレームワークを提案する。
まず,事前学習したモデルに基づいて目標指向のユーザシミュレータを構築し,ユーザシミュレータを用いて対話システムと対話して対話を生成する。
実験の結果,提案したユーザシミュレータによりトレーニングされたRLベースのTODシステムは,約98%のインフォメーションと成功率を達成することができた。
論文 参考訳(メタデータ) (2022-10-26T07:41:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。