論文の概要: Investigating Calibration and Corruption Robustness of Post-hoc Pruned Perception CNNs: An Image Classification Benchmark Study
- arxiv url: http://arxiv.org/abs/2405.20876v1
- Date: Fri, 31 May 2024 14:52:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:08:24.880436
- Title: Investigating Calibration and Corruption Robustness of Post-hoc Pruned Perception CNNs: An Image Classification Benchmark Study
- Title(参考訳): ポストホットプルーンドパーセプションCNNの校正と破壊ロバスト性の検討 : 画像分類ベンチマークによる検討
- Authors: Pallavi Mitra, Gesina Schwalbe, Nadja Klein,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は多くのコンピュータビジョンタスクで最先端のパフォーマンスを達成した。
高い計算とストレージの要求は、リソースに制約のある環境への展開を妨げる。
モデルプルーニングは、モデルのサイズを小さくし、優れたパフォーマンスを維持しながら、これらの制限を満たすのに役立つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have achieved state-of-the-art performance in many computer vision tasks. However, high computational and storage demands hinder their deployment into resource-constrained environments, such as embedded devices. Model pruning helps to meet these restrictions by reducing the model size, while maintaining superior performance. Meanwhile, safety-critical applications pose more than just resource and performance constraints. In particular, predictions must not be overly confident, i.e., provide properly calibrated uncertainty estimations (proper uncertainty calibration), and CNNs must be robust against corruptions like naturally occurring input perturbations (natural corruption robustness). This work investigates the important trade-off between uncertainty calibration, natural corruption robustness, and performance for current state-of-research post-hoc CNN pruning techniques in the context of image classification tasks. Our study reveals that post-hoc pruning substantially improves the model's uncertainty calibration, performance, and natural corruption robustness, sparking hope for safe and robust embedded CNNs.Furthermore, uncertainty calibration and natural corruption robustness are not mutually exclusive targets under pruning, as evidenced by the improved safety aspects obtained by post-hoc unstructured pruning with increasing compression.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は多くのコンピュータビジョンタスクで最先端のパフォーマンスを達成した。
しかし、高い計算量とストレージ要求は、組み込みデバイスのようなリソース制約のある環境への展開を妨げる。
モデルプルーニングは、モデルのサイズを小さくし、優れたパフォーマンスを維持しながら、これらの制限を満たすのに役立つ。
一方、セーフティクリティカルなアプリケーションは、単にリソースとパフォーマンスの制約だけに留まらない。
特に、予測は過度に自信を持っていなければならず、すなわち、適切に校正された不確実性推定(適切な不確実性校正)を提供し、CNNは自然に発生する入力摂動(自然な汚い堅牢性)のような汚職に対して堅牢でなければならない。
本研究では, 画像分類タスクの文脈における, 不確実性校正, 自然汚濁性, 現状調査後のCNNプルーニング技術の性能のトレードオフについて検討する。
本研究は, ポストホックプルーニングがモデルの不確実性校正, 性能, 自然汚濁堅牢性を著しく改善し, 安全で堅牢な組込みCNNの期待を喚起すること, さらに, ポストホック非構造化プルーニングによる安全面の改善と圧縮の増大により, 不確実性校正と自然汚濁堅牢性は相互に排他的な目標ではないことを明らかにする。
関連論文リスト
- Enhancing Reliability of Neural Networks at the Edge: Inverted
Normalization with Stochastic Affine Transformations [0.22499166814992438]
インメモリコンピューティングアーキテクチャに実装されたBayNNのロバスト性と推論精度を本質的に向上する手法を提案する。
実証的な結果は推論精度の優雅な低下を示し、最大で58.11%の値で改善された。
論文 参考訳(メタデータ) (2024-01-23T00:27:31Z) - Dynamic Batch Norm Statistics Update for Natural Robustness [5.366500153474747]
本稿では,汚職検出モデルとBN統計更新からなる統合フレームワークを提案する。
CIFAR10-CとImageNet-Cの精度は8%, 4%向上した。
論文 参考訳(メタデータ) (2023-10-31T17:20:30Z) - Investigating the Corruption Robustness of Image Classifiers with Random
Lp-norm Corruptions [3.1337872355726084]
本研究では,画像分類器のトレーニングデータとテストデータを強化するために,ランダムなp-ノルム汚職を用いることを検討した。
p-ノルムの汚職の組み合わせによるトレーニングデータの増大は、最先端のデータ増補スキームにおいても、汚職の堅牢性を大幅に向上させる。
論文 参考訳(メタデータ) (2023-05-09T12:45:43Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Benchmarking the Robustness of Spatial-Temporal Models Against
Corruptions [32.821121530785504]
我々は、画像の空間的腐敗を超えた時間的腐敗を考慮した、汚職堅牢性ベンチマーク、Mini Kinetics-CとMini SSV2-Cを確立する。
我々は、確立されたCNNベースおよびトランスフォーマーベースの時空間時間モデルにおける破壊堅牢性に関する徹底的な研究を行うための最初の試みを行う。
論文 参考訳(メタデータ) (2021-10-13T05:59:39Z) - Improving robustness against common corruptions with frequency biased
models [112.65717928060195]
目に見えない画像の腐敗は 驚くほど大きなパフォーマンス低下を引き起こします
画像の破損タイプは周波数スペクトルで異なる特性を持ち、ターゲットタイプのデータ拡張の恩恵を受けます。
畳み込み特徴マップの総変動(TV)を最小限に抑え、高周波堅牢性を高める新しい正規化方式を提案する。
論文 参考訳(メタデータ) (2021-03-30T10:44:50Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
自動運転車などの安全クリティカルなシステムには、定量化または少なくとも上限の不確実性が不可欠です。
マハラノビス距離に基づく統計的テストにより、厳しい品質基準である不確実性リアリズムを評価します。
自動車分野に採用し、プレーンエンコーダデコーダモデルと比較して、不確実性リアリズムを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-01-08T11:56:12Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - A Simple Framework to Quantify Different Types of Uncertainty in Deep
Neural Networks for Image Classification [0.0]
モデルの予測の不確実性を定量化することは、AIシステムの安全性を高めるために重要である。
これは、自動運転車の制御、医療画像分析、財務推定、法的分野など、エラーのコストが高いアプリケーションにとって極めて重要である。
本稿では,画像分類の課題に対して,Deep Neural Networksにおいて既知の3種類の不確実性を捕捉し,定量化するための完全なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-17T15:36:42Z) - Adversarial Robustness on In- and Out-Distribution Improves
Explainability [109.68938066821246]
RATIOは、Adversarial Training on In- and Out-distriionを通じて、堅牢性のためのトレーニング手順である。
RATIOはCIFAR10で最先端の$l$-adrialを実現し、よりクリーンな精度を維持している。
論文 参考訳(メタデータ) (2020-03-20T18:57:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。