論文の概要: PhyPlan: Generalizable and Rapid Physical Task Planning with Physics Informed Skill Networks for Robot Manipulators
- arxiv url: http://arxiv.org/abs/2406.00001v1
- Date: Mon, 22 Apr 2024 06:35:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 08:19:53.642608
- Title: PhyPlan: Generalizable and Rapid Physical Task Planning with Physics Informed Skill Networks for Robot Manipulators
- Title(参考訳): PhyPlan: ロボットマニピュレータのための物理インフォームドスキルネットワークによる汎用的かつ迅速な物理タスク計画
- Authors: Mudit Chopra, Abhinav Barnawal, Harshil Vagadia, Tamajit Banerjee, Shreshth Tuli, Souvik Chakraborty, Rohan Paul,
- Abstract要約: 物理推論の既存の方法は、実世界固有の複雑さと不確実性に苦しむデータハングリーである。
本稿では,物理インフォームドニューラルネットワーク(PINN)と修正モンテカルロ木探索(MCTS)を組み合わせた物理インフォームド計画フレームワークであるPhyPlanについて述べる。
- 参考スコア(独自算出の注目度): 5.4089975505600005
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Given the task of positioning a ball-like object to a goal region beyond direct reach, humans can often throw, slide, or rebound objects against the wall to attain the goal. However, enabling robots to reason similarly is non-trivial. Existing methods for physical reasoning are data-hungry and struggle with complexity and uncertainty inherent in the real world. This paper presents PhyPlan, a novel physics-informed planning framework that combines physics-informed neural networks (PINNs) with modified Monte Carlo Tree Search (MCTS) to enable embodied agents to perform dynamic physical tasks. PhyPlan leverages PINNs to simulate and predict outcomes of actions in a fast and accurate manner and uses MCTS for planning. It dynamically determines whether to consult a PINN-based simulator (coarse but fast) or engage directly with the actual environment (fine but slow) to determine optimal policy. Given an unseen task, PhyPlan can infer the sequence of actions and learn the latent parameters, resulting in a generalizable approach that can rapidly learn to perform novel physical tasks. Evaluation with robots in simulated 3D environments demonstrates the ability of our approach to solve 3D-physical reasoning tasks involving the composition of dynamic skills. Quantitatively, PhyPlan excels in several aspects: (i) it achieves lower regret when learning novel tasks compared to the state-of-the-art, (ii) it expedites skill learning and enhances the speed of physical reasoning, (iii) it demonstrates higher data efficiency compared to a physics un-informed approach.
- Abstract(参考訳): ボールのような物体を、直接到達範囲を超えてゴール領域に配置するタスクを考えると、人間はしばしば、目標を達成するために壁に投げたり、滑ったり、リバウンドしたりすることができる。
しかし、ロボットが同じように推理できることは簡単ではない。
物理推論の既存の方法は、実世界固有の複雑さと不確実性に苦しむデータハングリーである。
本稿では,物理インフォームドニューラルネットワーク(PINN)と修正モンテカルロ木探索(MCTS)を組み合わせた物理インフォームドプランニングフレームワークであるPhyPlanについて述べる。
PhyPlanはPINNを活用して、迅速かつ正確な方法でアクションの結果をシミュレートし、予測し、計画にMCTSを使用する。
PINNベースのシミュレータ(粗いが速い)を参照するか、あるいは実際の環境(細いが遅い)に直接関与して最適なポリシーを決定するかを動的に決定する。
目に見えないタスクが与えられた場合、PhyPlanはアクションのシーケンスを推測し、潜在パラメータを学習することができる。
シミュレーション3次元環境におけるロボットによる評価は,ダイナミックスキルの構成を含む3次元物理推論課題を解決するためのアプローチの能力を示す。
定量的には、PhyPlanはいくつかの点で優れている。
(i)新しい仕事を学ぶときの後悔度を、最先端と比較して低くする。
(二)技能の習得を早め、理学療法のスピードを高めること。
(iii)物理の非インフォームドアプローチに比べて高いデータ効率を示す。
関連論文リスト
- ReasonPlanner: Enhancing Autonomous Planning in Dynamic Environments with Temporal Knowledge Graphs and LLMs [0.32141666878560626]
本稿では,リフレクティブ思考,計画,対話的推論のための新しいジェネラリストエージェントReasonPlannerを紹介する。
ReasonPlannerはScienceWorldベンチマークの従来の最先端のプロンプトベースの手法を1.8倍以上上回っている。
凍結重量のみに依存するため、勾配更新は不要である。
論文 参考訳(メタデータ) (2024-10-11T20:58:51Z) - PhyPlan: Compositional and Adaptive Physical Task Reasoning with
Physics-Informed Skill Networks for Robot Manipulators [5.680235630702706]
物理推論の既存の方法は、実世界固有の複雑さと不確実性に苦しむデータハングリーである。
本稿では,物理インフォームドニューラルネットワーク(PINN)と修正モンテカルロ木探索(MCTS)を組み合わせた物理インフォームド計画フレームワークであるPhyPlanについて述べる。
論文 参考訳(メタデータ) (2024-02-24T08:51:03Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
我々は、前方物理シミュレーションと後方勾配近似とニューラルネットワークを組み合わせた新しいディープラーニングパイプラインであるDeepSimHOを紹介する。
提案手法は, 評価の安定性を著しく向上し, テスト時間最適化よりも優れた効率性を実現する。
論文 参考訳(メタデータ) (2023-10-11T05:34:36Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Embodied Task Planning with Large Language Models [86.63533340293361]
本研究では,現場制約を考慮した地上計画のための具体的タスクにおけるTAsk Planing Agent (TaPA)を提案する。
推論の際には,オープンボキャブラリオブジェクト検出器を様々な場所で収集された多視点RGB画像に拡張することにより,シーン内の物体を検出する。
実験の結果,我々のTaPAフレームワークから生成されたプランは,LLaVAやGPT-3.5よりも大きなマージンで高い成功率が得られることがわかった。
論文 参考訳(メタデータ) (2023-07-04T17:58:25Z) - Progressive Learning for Physics-informed Neural Motion Planning [1.9798034349981157]
モーションプランニングは、衝突のないロボットの動き経路を見つけるための高速な方法を必要とする、中核的なロボティクス問題の1つである。
近年の進歩は、運動計画のためのアイコン方程式を直接解く物理インフォームドNMPアプローチにつながっている。
本稿では,ニューラルネットワークをエキスパートデータなしで学習するための新しい進化的学習戦略を提案する。
論文 参考訳(メタデータ) (2023-06-01T12:41:05Z) - Efficient Learning of High Level Plans from Play [57.29562823883257]
本稿では,移動計画と深いRLを橋渡しするロボット学習のフレームワークであるELF-Pについて紹介する。
ELF-Pは、複数の現実的な操作タスクよりも、関連するベースラインよりもはるかに優れたサンプル効率を有することを示す。
論文 参考訳(メタデータ) (2023-03-16T20:09:47Z) - Achieving mouse-level strategic evasion performance using real-time
computational planning [59.60094442546867]
計画とは、脳が想像し、予測可能な未来を成立させる特別な能力である。
我々は,動物の生態が空間計画の価値をどのように支配するかという研究に基づいて,より効率的な生物学的に着想を得た計画アルゴリズムであるTLPPOを開発した。
TLPPOを用いたリアルタイムエージェントの性能とライブマウスの性能を比較し,ロボット捕食者を避けることを課題とする。
論文 参考訳(メタデータ) (2022-11-04T18:34:36Z) - NTFields: Neural Time Fields for Physics-Informed Robot Motion Planning [1.9798034349981157]
乱雑なシナリオにおけるロボット動作計画のためのニューラルタイムフィールド(NTFields)を提案する。
本フレームワークは,Eykonal Equationと呼ばれる非線形一階PDEから得られる経路解を見つけるために,連続到着時間を生成する波動伝搬モデルを表す。
ギブソン・データセットを含む様々な散在した3次元環境において本手法の評価を行い,4-DOFおよび6-DOFロボットマニピュレータの動作計画問題を解く能力を実証した。
論文 参考訳(メタデータ) (2022-09-30T22:34:54Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z) - iCORPP: Interleaved Commonsense Reasoning and Probabilistic Planning on
Robots [46.13039152809055]
我々はiCORPPと呼ばれる新しいアルゴリズムを提案し、現在の世界状態を同時に推定し、世界ダイナミクスの推論を行い、タスク指向のコントローラを構築する。
結果は、競合するベースラインと比較して、スケーラビリティ、効率、適応性が大幅に改善されたことを示している。
論文 参考訳(メタデータ) (2020-04-18T17:46:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。