論文の概要: Dynamic Multi-Objective Lion Swarm Optimization with Multi-strategy Fusion: An application in 6R robot trajectory
- arxiv url: http://arxiv.org/abs/2406.00114v1
- Date: Fri, 31 May 2024 18:05:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:33:32.418242
- Title: Dynamic Multi-Objective Lion Swarm Optimization with Multi-strategy Fusion: An application in 6R robot trajectory
- Title(参考訳): マルチストラテジーフュージョンを用いた動的多目的ライオン群最適化:6Rロボット軌道への応用
- Authors: Bao Liu, Tianbao Liu, Lei Gao, Zhongshuo Hu, Fei Ye,
- Abstract要約: 本研究では,MF-DMOLSO(MF-DMOLSO)を用いた動的多目的ライオン群最適化手法を提案する。
評価の結果,MF-DMOLSOは既存のアルゴリズムより優れており,比較アルゴリズムの90%を超える精度が得られた。
MF-DMOLSOは走行時間と最大加速をそれぞれ8.3sと0.3pi rad/s2に最適化し、設定カバレッジ率は70.97%に達した。
- 参考スコア(独自算出の注目度): 11.421300692057029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of industrialization has fostered innovative swarm intelligence algorithms, with Lion Swarm Optimization (LSO) being notable for its robustness and efficiency. However, multi-objective variants of LSO struggle with poor initialization, local optima entrapment, and slow adaptation to dynamic environments. This study proposes a Dynamic Multi-Objective Lion Swarm Optimization with Multi-strategy Fusion (MF-DMOLSO) to overcome these challenges. MF-DMOLSO includes an initialization unit using chaotic mapping, a position update unit enhancing behavior patterns based on non-domination and diversity, and an external archive update unit. Evaluations on benchmark functions showed MF-DMOLSO outperformed existing algorithms achieving an accuracy that exceeds the comparison algorithm by 90%. Applied to 6R robot trajectory planning, MF-DMOLSO optimized running time and maximum acceleration to 8.3s and 0.3pi rad/s^2, respectively, achieving a set coverage rate of 70.97% compared to 2% by multi-objective particle swarm optimization, thus improving efficiency and reducing mechanical dither.
- Abstract(参考訳): 工業化の進展により、Lion Swarm Optimization(LSO)はその堅牢性と効率性で注目され、革新的なSwarmインテリジェンスアルゴリズムが発展してきた。
しかし、LSOの多目的変種は、初期化の貧弱、局所的最適包摂、動的環境への適応の遅さに苦慮している。
本研究では,MF-DMOLSO(MF-DMOLSO)を用いた動的多目的ライオン群最適化手法を提案する。
MF−DMOLSOは、カオスマッピングを用いた初期化部と、非支配と多様性に基づく行動パターンを強化する位置更新部と、外部アーカイブ更新部とを備える。
ベンチマーク関数の評価では、MF-DMOLSOが既存のアルゴリズムより優れており、比較アルゴリズムを90%超の精度で達成している。
6Rロボット軌道計画に適用した場合,MF-DMOLSOは最大走行時間を8.3s,0.3pi rad/s^2に最適化し,多目的粒子群最適化では2%に対して70.97%に設定し,効率の向上とメカニカルディザーの低減を実現した。
関連論文リスト
- MARS: Unleashing the Power of Variance Reduction for Training Large Models [56.47014540413659]
Adam、Adam、およびそれらの変種のような大規模な勾配アルゴリズムは、この種のトレーニングの開発の中心となっている。
本稿では,事前条件付き勾配最適化手法と,スケールドモーメント手法による分散低減を両立させる枠組みを提案する。
論文 参考訳(メタデータ) (2024-11-15T18:57:39Z) - Integrating Chaotic Evolutionary and Local Search Techniques in Decision Space for Enhanced Evolutionary Multi-Objective Optimization [1.8130068086063336]
本稿では,SOMMOP(Single-Objective Multi-Modal Optimization)とMOO(Multi-Objective Optimization)の両方に焦点を当てる。
SOMMOPではニッチ技術とカオス進化を統合し,ガウス突然変異を併用したパーシスタンス・クラスタリングを行った。
MOOでは,これらの手法を不確実性に基づく選択,適応的チューニングを組み込んだ包括的フレームワークに拡張し,決定論的群集に半径(R)の概念を導入する。
論文 参考訳(メタデータ) (2024-11-12T15:18:48Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - Decoding-Time Language Model Alignment with Multiple Objectives [116.42095026960598]
既存の手法は主に、1つの報酬関数に対してLMを最適化することに集中し、それらの適応性は様々な目的に制限される。
本稿では,予測の線形結合から次のトークンを出力する復号時間アルゴリズムである$textbfmulti-objective decoding (MOD)$を提案する。
提案手法は, 自然条件下であっても, 既存のアプローチが準最適であることを示すとともに, 提案手法の最適性を保証する。
論文 参考訳(メタデータ) (2024-06-27T02:46:30Z) - Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization [29.580786235313987]
InvTrEMO(InvTrEMO)の第1回リバーストランスファー・マルチオブジェクト(InvTrEMO)を紹介する。
InvTrEMOは、決定空間がタスク間で正確に整合していない場合でも、多くの一般的な領域で共通の目的関数を利用する。
InvTrEMOは、高い精度の逆モデルを重要な副産物とし、オンデマンドで調整されたソリューションの生成を可能にする。
論文 参考訳(メタデータ) (2023-12-22T14:12:18Z) - Combining Kernelized Autoencoding and Centroid Prediction for Dynamic
Multi-objective Optimization [3.431120541553662]
本稿では,カーネル化された自己コード進化探索と遠近法に基づく予測を組み合わせた統一パラダイムを提案する。
提案手法は,多くの複雑なベンチマーク問題に対して,最先端の5つのアルゴリズムと比較する。
論文 参考訳(メタデータ) (2023-12-02T00:24:22Z) - Rank-Based Learning and Local Model Based Evolutionary Algorithm for High-Dimensional Expensive Multi-Objective Problems [1.0499611180329806]
提案アルゴリズムは, ランクベース学習, ハイパーボリュームベース非支配探索, 比較的スパースな対象空間における局所探索の3つの部分からなる。
地熱貯留層熱抽出最適化におけるベンチマーク問題と実世界の応用の実験的結果は,提案アルゴリズムが優れた性能を示すことを示すものである。
論文 参考訳(メタデータ) (2023-04-19T06:25:04Z) - Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations [50.591267188664666]
Propulateは、グローバル最適化のための進化的最適化アルゴリズムとソフトウェアパッケージである。
提案アルゴリズムは, 選択, 突然変異, 交叉, 移動の変種を特徴とする。
Propulateは解の精度を犠牲にすることなく、最大で3桁高速であることがわかった。
論文 参考訳(メタデータ) (2023-01-20T18:17:34Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Evolutionary Gait Transfer of Multi-Legged Robots in Complex Terrains [14.787379075870383]
本稿では、Tr-GOと呼ばれる歩行最適化のための移動学習に基づく進化的フレームワークを提案する。
この考え方は、トランスファーラーニング技術を用いて高品質な人口を初期化することを目的としており、どんな集団ベースの最適化アルゴリズムでもこのフレームワークにシームレスに統合できる。
実験の結果,3つの多目的進化アルゴリズムに基づく歩行最適化問題に対する提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-12-24T16:41:36Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。