ADEP: A Novel Approach Based on Discriminator-Enhanced Encoder-Decoder Architecture for Accurate Prediction of Adverse Effects in Polypharmacy
- URL: http://arxiv.org/abs/2406.00118v1
- Date: Fri, 31 May 2024 18:20:17 GMT
- Title: ADEP: A Novel Approach Based on Discriminator-Enhanced Encoder-Decoder Architecture for Accurate Prediction of Adverse Effects in Polypharmacy
- Authors: Katayoun Kobraei, Mehrdad Baradaran, Seyed Mohsen Sadeghi, Raziyeh Masumshah, Changiz Eslahchi,
- Abstract summary: We introduce ADEP, a novel approach integrating a discriminator and an encoder-decoder model to address data sparsity and enhance feature extraction.
ADEP employs a three-part model, including multiple classification methods, to predict adverse effects in polypharmacy.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivation: Unanticipated drug-drug interactions (DDIs) pose significant risks in polypharmacy, emphasizing the need for predictive methods. Recent advancements in computational techniques aim to address this challenge. Methods: We introduce ADEP, a novel approach integrating a discriminator and an encoder-decoder model to address data sparsity and enhance feature extraction. ADEP employs a three-part model, including multiple classification methods, to predict adverse effects in polypharmacy. Results: Evaluation on benchmark datasets shows ADEP outperforms well-known methods such as GGI-DDI, SSF-DDI, LSFC, DPSP, GNN-DDI, MSTE, MDF-SA-DDI, NNPS, DDIMDL, Random Forest, K-Nearest-Neighbor, Logistic Regression, and Decision Tree. Key metrics include Accuracy, AUROC, AUPRC, F-score, Recall, Precision, False Negatives, and False Positives. ADEP achieves more accurate predictions of adverse effects in polypharmacy. A case study with real-world data illustrates ADEP's practical application in identifying potential DDIs and preventing adverse effects. Conclusions: ADEP significantly advances the prediction of polypharmacy adverse effects, offering improved accuracy and reliability. Its innovative architecture enhances feature extraction from sparse medical data, improving medication safety and patient outcomes. Availability: Source code and datasets are available at https://github.com/m0hssn/ADEP.
Related papers
- Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
Domain adaptation methods struggle when distribution shifts occur simultaneously in $X$ and $y$.
This paper proposes a novel method termed Geodesic Optimization for Predictive Shift Adaptation (GOPSA) to address test-time multi-source DA.
GOPSA has the potential to combine the advantages of mixed-effects modeling with machine learning for biomedical applications of EEG.
arXiv Detail & Related papers (2024-07-04T12:15:42Z) - Learning to Describe for Predicting Zero-shot Drug-Drug Interactions [54.172575323610175]
Adverse drug-drug interactions can compromise the effectiveness of concurrent drug administration.
Traditional computational methods for DDI prediction may fail to capture interactions for new drugs due to the lack of knowledge.
We propose TextDDI with a language model-based DDI predictor and a reinforcement learning(RL)-based information selector.
arXiv Detail & Related papers (2024-03-13T09:42:46Z) - DR-VIDAL -- Doubly Robust Variational Information-theoretic Deep
Adversarial Learning for Counterfactual Prediction and Treatment Effect
Estimation on Real World Data [7.712429926730386]
Causal deep learning has improved over traditional techniques for estimating individualized treatment effects.
We present DR-VIDAL, a novel generative framework that combines two joint models of treatment and outcome.
DR-VIDAL achieves better performance than other non-generative and generative methods on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-03-07T19:44:58Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for
AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise
Annotations [90.27736364704108]
We present DrugOOD, a systematic OOD dataset curator and benchmark for AI-aided drug discovery.
DrugOOD comes with an open-source Python package that fully automates benchmarking processes.
We focus on one of the most crucial problems in AIDD: drug target binding affinity prediction.
arXiv Detail & Related papers (2022-01-24T12:32:48Z) - Can uncertainty boost the reliability of AI-based diagnostic methods in
digital pathology? [3.8424737607413157]
We evaluate if adding uncertainty estimates for DL predictions in digital pathology could result in increased value for the clinical applications.
We compare the effectiveness of model-integrated methods (MC dropout and Deep ensembles) with a model-agnostic approach.
Our results show that uncertainty estimates can add some reliability and reduce sensitivity to classification threshold selection.
arXiv Detail & Related papers (2021-12-17T10:10:00Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - BridgeDPI: A Novel Graph Neural Network for Predicting Drug-Protein
Interactions [18.242888464394575]
We propose a novel deep learning framework, namely BridgeDPI.
It introduces a class of nodes named hyper-nodes, which bridge different proteins/drugs to work as PPAs and DDAs.
In three real-world datasets, we demonstrate that BridgeDPI outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-01-29T12:53:39Z) - AttentionDDI: Siamese Attention-based Deep Learning method for drug-drug
interaction predictions [0.9176056742068811]
Drug-drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves.
Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test all combinations and discover previously unobserved side effects.
We propose a Siamese self-attention multi-modal neural network for DDI prediction that integrates multiple drug similarity measures.
arXiv Detail & Related papers (2020-12-24T13:33:07Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.