論文の概要: Training on the Edge of Stability Is Caused by Layerwise Jacobian Alignment
- arxiv url: http://arxiv.org/abs/2406.00127v1
- Date: Fri, 31 May 2024 18:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 08:33:32.399815
- Title: Training on the Edge of Stability Is Caused by Layerwise Jacobian Alignment
- Title(参考訳): 階層的ジャコビアンアライメントによる安定性のエッジのトレーニング
- Authors: Mark Lowell, Catharine Kastner,
- Abstract要約: 我々は指数的解法を用いて、安定性の端に入ることなくニューラルネットワークを訓練する。
実験により,ヘッセン行列の鋭さの増加は,ネットワークの層状ジャコビアン行列の整合性によって引き起こされることを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: During neural network training, the sharpness of the Hessian matrix of the training loss rises until training is on the edge of stability. As a result, even nonstochastic gradient descent does not accurately model the underlying dynamical system defined by the gradient flow of the training loss. We use an exponential Euler solver to train the network without entering the edge of stability, so that we accurately approximate the true gradient descent dynamics. We demonstrate experimentally that the increase in the sharpness of the Hessian matrix is caused by the layerwise Jacobian matrices of the network becoming aligned, so that a small change in the network preactivations near the inputs of the network can cause a large change in the outputs of the network. We further demonstrate that the degree of alignment scales with the size of the dataset by a power law with a coefficient of determination between 0.74 and 0.98.
- Abstract(参考訳): ニューラルネットワークトレーニング中、トレーニング損失のヘッセン行列のシャープネスは、トレーニングが安定性の端にあるまで上昇する。
その結果、非確率勾配降下でさえ、トレーニング損失の勾配流によって定義される基礎力学系を正確にモデル化することができない。
指数型オイラーソルバを用いてネットワークを安定の端に入ることなく訓練し、真の勾配降下ダイナミクスを正確に近似する。
本研究では,ネットワークの階層的ジャコビアン行列の整列化によるヘッセン行列のシャープさの増加を実験的に証明し,ネットワークの入力近傍のネットワーク前兆の変化がネットワークの出力に大きな変化をもたらすことを示した。
さらに,0.74から0.98の判定係数を持つ電力法則により,アライメントの度合いがデータセットのサイズと一致することを示した。
関連論文リスト
- Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
好ましい性質を持つ解に対する暗黙の偏見は、勾配に基づく最適化によって訓練されたニューラルネットワークがうまく一般化できる重要な理由であると考えられている。
勾配流の暗黙バイアスは、均質ニューラルネットワーク(ReLUやリークReLUネットワークを含む)に対して広く研究されているが、勾配降下の暗黙バイアスは現在、滑らかなニューラルネットワークに対してのみ理解されている。
論文 参考訳(メタデータ) (2023-10-29T08:47:48Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
本研究では,ReLUを活性化した2層完全連結ニューラルネットワークにおける勾配流と勾配降下の暗黙的バイアスについて検討する。
勾配流には、均一なニューラルネットワークに対する暗黙のバイアスに関する最近の研究を活用し、リーク的に勾配流が2つ以上のランクを持つニューラルネットワークを生成することを示す。
勾配降下は, ランダムな分散が十分小さい場合, 勾配降下の1ステップでネットワークのランクが劇的に低下し, トレーニング中もランクが小さくなることを示す。
論文 参考訳(メタデータ) (2022-10-13T15:09:54Z) - Convergence and Implicit Regularization Properties of Gradient Descent
for Deep Residual Networks [7.090165638014331]
一定の層幅とスムーズな活性化関数を持つ深層残留ネットワークのトレーニングにおいて,勾配勾配の線形収束性を大域最小限に証明する。
トレーニングされた重みは、層指数の関数として、ネットワークの深さが無限大になる傾向にあるため、H"古い"スケーリング制限が連続であることを示す。
論文 参考訳(メタデータ) (2022-04-14T22:50:28Z) - Training invariances and the low-rank phenomenon: beyond linear networks [44.02161831977037]
線形分離可能なデータに対して、ロジスティックあるいは指数損失の深い線形ネットワークを訓練すると、重みは1$の行列に収束する。
非線形ReLU活性化フィードフォワードネットワークに対して、低ランク現象が厳格に証明されたのはこれが初めてである。
我々の証明は、あるパラメータの方向収束の下で重みが一定である多重線型関数と別のReLUネットワークへのネットワークの特定の分解に依存している。
論文 参考訳(メタデータ) (2022-01-28T07:31:19Z) - Gradient-trained Weights in Wide Neural Networks Align Layerwise to
Error-scaled Input Correlations [11.176824373696324]
我々は、勾配降下によって訓練された非線形活性化を伴う無限幅ニューラルネットワークの層方向の重みダイナミクスを導出する。
我々は、バックプロパゲーションと同じアライメントを理論的に達成するバックプロパゲーションフリー学習ルール、Align-zeroとAlign-adaを定式化した。
論文 参考訳(メタデータ) (2021-06-15T21:56:38Z) - Gradient Descent on Neural Networks Typically Occurs at the Edge of
Stability [94.4070247697549]
ニューラルネットワークトレーニング対象に対するフルバッチ勾配降下は、安定性のエッジと呼ばれるレジームで動作します。
この体制では、トレーニング損失 Hessian の最大固有値は2/text(ステップサイズ)$ の数値よりすぐ上にあり、トレーニング損失は短い時間スケールで非単調に振る舞うが、長い時間スケールでは一貫して減少する。
論文 参考訳(メタデータ) (2021-02-26T22:08:19Z) - Deep orthogonal linear networks are shallow [9.434391240650266]
勾配勾配降下による重みのトレーニングは、勾配勾配降下による全因子化のトレーニングと等価であることを示す。
これは、この設定では過度なパラメータ化と暗黙のバイアスがまったく影響しないことを意味する。
論文 参考訳(メタデータ) (2020-11-27T16:57:19Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
ヘッセン行列のノルムを近似し, 制御することにより, 層間における重みのグローバルな曲率を厳密に推定する。
Word2Vec と MNIST/CIFAR 画像分類タスクの実験により,Hessian ノルムの追跡が診断ツールとして有用であることが確認された。
論文 参考訳(メタデータ) (2020-04-20T18:12:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。