Privacy Challenges in Meta-Learning: An Investigation on Model-Agnostic Meta-Learning
- URL: http://arxiv.org/abs/2406.00249v1
- Date: Sat, 1 Jun 2024 01:10:35 GMT
- Title: Privacy Challenges in Meta-Learning: An Investigation on Model-Agnostic Meta-Learning
- Authors: Mina Rafiei, Mohammadmahdi Maheri, Hamid R. Rabiee,
- Abstract summary: In current meta-learning methods, task learners locally learn models from sensitive data, termed support sets.
Despite the absence of explicit data sharing, privacy concerns persist.
This paper examines potential data leakage in a prominent metalearning algorithm, specifically Model-Agnostic Meta-Learning (MAML)
- Score: 2.8948274245812327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-learning involves multiple learners, each dedicated to specific tasks, collaborating in a data-constrained setting. In current meta-learning methods, task learners locally learn models from sensitive data, termed support sets. These task learners subsequently share model-related information, such as gradients or loss values, which is computed using another part of the data termed query set, with a meta-learner. The meta-learner employs this information to update its meta-knowledge. Despite the absence of explicit data sharing, privacy concerns persist. This paper examines potential data leakage in a prominent metalearning algorithm, specifically Model-Agnostic Meta-Learning (MAML). In MAML, gradients are shared between the metalearner and task-learners. The primary objective is to scrutinize the gradient and the information it encompasses about the task dataset. Subsequently, we endeavor to propose membership inference attacks targeting the task dataset containing support and query sets. Finally, we explore various noise injection methods designed to safeguard the privacy of task data and thwart potential attacks. Experimental results demonstrate the effectiveness of these attacks on MAML and the efficacy of proper noise injection methods in countering them.
Related papers
- Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Learning to Learn from APIs: Black-Box Data-Free Meta-Learning [95.41441357931397]
Data-free meta-learning (DFML) aims to enable efficient learning of new tasks by meta-learning from a collection of pre-trained models without access to the training data.
Existing DFML work can only meta-learn from (i) white-box and (ii) small-scale pre-trained models.
We propose a Bi-level Data-free Meta Knowledge Distillation (BiDf-MKD) framework to transfer more general meta knowledge from a collection of black-box APIs to one single model.
arXiv Detail & Related papers (2023-05-28T18:00:12Z) - Meta-Learning with Self-Improving Momentum Target [72.98879709228981]
We propose Self-improving Momentum Target (SiMT) to improve the performance of a meta-learner.
SiMT generates the target model by adapting from the temporal ensemble of the meta-learner.
We show that SiMT brings a significant performance gain when combined with a wide range of meta-learning methods.
arXiv Detail & Related papers (2022-10-11T06:45:15Z) - BAMLD: Bayesian Active Meta-Learning by Disagreement [39.59987601426039]
This paper introduces an information-theoretic active task selection mechanism to decrease the number of labeling requests for meta-training tasks.
We report its empirical performance results that compare favourably against existing acquisition mechanisms.
arXiv Detail & Related papers (2021-10-19T13:06:51Z) - Meta-Learning with Fewer Tasks through Task Interpolation [67.03769747726666]
Current meta-learning algorithms require a large number of meta-training tasks, which may not be accessible in real-world scenarios.
By meta-learning with task gradient (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels.
Empirically, in our experiments on eight datasets from diverse domains, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.
arXiv Detail & Related papers (2021-06-04T20:15:34Z) - Learning Adaptable Policy via Meta-Adversarial Inverse Reinforcement
Learning for Decision-making Tasks [2.1485350418225244]
We build an adaptable imitation learning model based on the integration of Meta-learning and Adversarial Inverse Reinforcement Learning.
We exploit the adversarial learning and inverse reinforcement learning mechanisms to learn policies and reward functions simultaneously from available training tasks.
arXiv Detail & Related papers (2021-03-23T17:16:38Z) - Meta-Regularization by Enforcing Mutual-Exclusiveness [0.8057006406834467]
We propose a regularization technique for meta-learning models that gives the model designer more control over the information flow during meta-training.
Our proposed regularization function shows an accuracy boost of $sim$ $36%$ on the Omniglot dataset.
arXiv Detail & Related papers (2021-01-24T22:57:19Z) - Information-Theoretic Generalization Bounds for Meta-Learning and
Applications [42.275148861039895]
Key performance measure for meta-learning is the meta-generalization gap.
This paper presents novel information-theoretic upper bounds on the meta-generalization gap.
arXiv Detail & Related papers (2020-05-09T05:48:01Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
We propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared.
In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection.
arXiv Detail & Related papers (2020-03-17T13:40:00Z) - Incremental Meta-Learning via Indirect Discriminant Alignment [118.61152684795178]
We develop a notion of incremental learning during the meta-training phase of meta-learning.
Our approach performs favorably at test time as compared to training a model with the full meta-training set.
arXiv Detail & Related papers (2020-02-11T01:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.