Learn to Unlearn: Meta-Learning-Based Knowledge Graph Embedding Unlearning
- URL: http://arxiv.org/abs/2412.00881v1
- Date: Sun, 01 Dec 2024 16:43:04 GMT
- Title: Learn to Unlearn: Meta-Learning-Based Knowledge Graph Embedding Unlearning
- Authors: Naixing Xu, Qian Li, Xu Wang, Bingchen Liu, Xin Li,
- Abstract summary: This paper introduces MetaEU, a Meta-Learning-Based Knowledge Graph Embedding Unlearning framework.
Experiments on benchmark datasets demonstrate its effectiveness in KG embedding unlearning.
- Score: 11.836591995678612
- License:
- Abstract: Knowledge graph (KG) embedding methods map entities and relations into continuous vector spaces, improving performance in tasks like link prediction and question answering. With rising privacy concerns, machine unlearning (MU) has emerged as a critical AI technology, enabling models to eliminate the influence of specific data. Existing MU approaches often rely on data obfuscation and adjustments to training loss but lack generalization across unlearning tasks. This paper introduces MetaEU, a Meta-Learning-Based Knowledge Graph Embedding Unlearning framework. MetaEU leverages meta-learning to unlearn specific embeddings, mitigating their impact while preserving model performance on remaining data. Experiments on benchmark datasets demonstrate its effectiveness in KG embedding unlearning.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Erase then Rectify: A Training-Free Parameter Editing Approach for Cost-Effective Graph Unlearning [17.85404473268992]
Graph unlearning aims to eliminate the influence of nodes, edges, or attributes from a trained Graph Neural Network (GNN)
Existing graph unlearning techniques often necessitate additional training on the remaining data, leading to significant computational costs.
We propose a two-stage training-free approach, Erase then Rectify (ETR), designed for efficient and scalable graph unlearning.
arXiv Detail & Related papers (2024-09-25T07:20:59Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - A More Practical Approach to Machine Unlearning [0.0]
Machine unlearning is the ability to remove the influence of specific data points from a trained model.
The embedding layer in GPT-2 is crucial for effective unlearning.
Fuzzy matching techniques shift the model to a new optimum, while iterative unlearning provides a more complete modality.
arXiv Detail & Related papers (2024-06-13T17:59:06Z) - Privacy Challenges in Meta-Learning: An Investigation on Model-Agnostic Meta-Learning [2.8948274245812327]
In current meta-learning methods, task learners locally learn models from sensitive data, termed support sets.
Despite the absence of explicit data sharing, privacy concerns persist.
This paper examines potential data leakage in a prominent metalearning algorithm, specifically Model-Agnostic Meta-Learning (MAML)
arXiv Detail & Related papers (2024-06-01T01:10:35Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF) is a model-agnostic unlearning method that can efficiently and accurately estimate parameter changes in response to a $epsilon$-mass perturbation in deleted data.
We conduct extensive experiments on four representative GNN models and three benchmark datasets to justify GIF's superiority in terms of unlearning efficacy, model utility, and unlearning efficiency.
arXiv Detail & Related papers (2023-04-06T03:02:54Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.