Algebraic Geometrical Analysis of Metropolis Algorithm When Parameters Are Non-identifiable
- URL: http://arxiv.org/abs/2406.00369v1
- Date: Sat, 1 Jun 2024 09:04:14 GMT
- Title: Algebraic Geometrical Analysis of Metropolis Algorithm When Parameters Are Non-identifiable
- Authors: Kenji Nagata, Yoh-ichi Mototake,
- Abstract summary: The Metropolis algorithm is one of the Markov chain Monte Carlo (MCMC) methods that realize sampling from the target probability distribution.
We are concerned with the sampling from the distribution in non-identifiable cases that involve models with Fisher information matrices that may fail to be invertible.
- Score: 0.4604003661048266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Metropolis algorithm is one of the Markov chain Monte Carlo (MCMC) methods that realize sampling from the target probability distribution. In this paper, we are concerned with the sampling from the distribution in non-identifiable cases that involve models with Fisher information matrices that may fail to be invertible. The theoretical adjustment of the step size, which is the variance of the candidate distribution, is difficult for non-identifiable cases. In this study, to establish such a principle, the average acceptance rate, which is used as a guideline to optimize the step size in the MCMC method, was analytically derived in non-identifiable cases. The optimization principle for the step size was developed from the viewpoint of the average acceptance rate. In addition, we performed numerical experiments on some specific target distributions to verify the effectiveness of our theoretical results.
Related papers
- Deep Evidential Learning for Bayesian Quantile Regression [3.6294895527930504]
It is desirable to have accurate uncertainty estimation from a single deterministic forward-pass model.
This paper proposes a deep Bayesian quantile regression model that can estimate the quantiles of a continuous target distribution without the Gaussian assumption.
arXiv Detail & Related papers (2023-08-21T11:42:16Z) - Sobolev Space Regularised Pre Density Models [51.558848491038916]
We propose a new approach to non-parametric density estimation that is based on regularizing a Sobolev norm of the density.
This method is statistically consistent, and makes the inductive validation model clear and consistent.
arXiv Detail & Related papers (2023-07-25T18:47:53Z) - Object based Bayesian full-waveform inversion for shear elastography [0.0]
We develop a computational framework to quantify uncertainty in shear elastography imaging of anomalies in tissues.
We find the posterior probability of parameter fields representing the geometry of the anomalies and their shear moduli.
We demonstrate the approach on synthetic two dimensional tests with smooth and irregular shapes.
arXiv Detail & Related papers (2023-05-11T08:25:25Z) - Piecewise Deterministic Markov Processes for Bayesian Neural Networks [20.865775626533434]
Inference on modern Bayesian Neural Networks (BNNs) often relies on a variational inference treatment, imposing violated assumptions of independence and the form of the posterior.
New Piecewise Deterministic Markov Process (PDMP) samplers permit subsampling, though introduce a model specific inhomogenous Poisson Process (IPPs) which is difficult to sample from.
This work introduces a new generic and adaptive thinning scheme for sampling from IPPs, and demonstrates how this approach can accelerate the application of PDMPs for inference in BNNs.
arXiv Detail & Related papers (2023-02-17T06:38:16Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - A Survey of Monte Carlo Methods for Parameter Estimation [0.0]
This paper reviews Monte Carlo (MC) methods for the estimation of static parameters in signal processing applications.
A historical note on the development of MC schemes is also provided, followed by the basic MC method and a brief description of the rejection sampling (RS) algorithm.
arXiv Detail & Related papers (2021-07-25T14:57:58Z) - Continuous Wasserstein-2 Barycenter Estimation without Minimax
Optimization [94.18714844247766]
Wasserstein barycenters provide a geometric notion of the weighted average of probability measures based on optimal transport.
We present a scalable algorithm to compute Wasserstein-2 barycenters given sample access to the input measures.
arXiv Detail & Related papers (2021-02-02T21:01:13Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Quantifying the Uncertainty in Model Parameters Using Gaussian
Process-Based Markov Chain Monte Carlo: An Application to Cardiac
Electrophysiological Models [7.8316005711996235]
Estimates of patient-specific model parameters are important for personalized modeling.
Standard Markov Chain Monte Carlo sampling requires repeated model simulations that are computationally infeasible.
A common solution is to replace the simulation model with a computationally-efficient surrogate for a faster sampling.
arXiv Detail & Related papers (2020-06-02T23:48:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.