論文の概要: DS@BioMed at ImageCLEFmedical Caption 2024: Enhanced Attention Mechanisms in Medical Caption Generation through Concept Detection Integration
- arxiv url: http://arxiv.org/abs/2406.00391v1
- Date: Sat, 1 Jun 2024 10:14:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 07:15:00.935355
- Title: DS@BioMed at ImageCLEFmedical Caption 2024: Enhanced Attention Mechanisms in Medical Caption Generation through Concept Detection Integration
- Title(参考訳): DS@BioMed at ImageCLEFmedical Caption 2024: 概念検出統合による医療カプセル生成における注意機構の増強
- Authors: Nhi Ngoc-Yen Nguyen, Le-Huy Tu, Dieu-Phuong Nguyen, Nhat-Tan Do, Minh Triet Thai, Bao-Thien Nguyen-Tat,
- Abstract要約: 本研究では,概念検出を注意機構に組み込むことにより,医用画像キャプション生成へのアプローチを改良した。
キャプション予測タスクでは,概念統合と後処理技術によって強化されたBEiT+BioBartモデルで,検証セットで0.60589,プライベートテストセットで0.5794,9位となった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Our study presents an enhanced approach to medical image caption generation by integrating concept detection into attention mechanisms. Method: This method utilizes sophisticated models to identify critical concepts within medical images, which are then refined and incorporated into the caption generation process. Results: Our concept detection task, which employed the Swin-V2 model, achieved an F1 score of 0.58944 on the validation set and 0.61998 on the private test set, securing the third position. For the caption prediction task, our BEiT+BioBart model, enhanced with concept integration and post-processing techniques, attained a BERTScore of 0.60589 on the validation set and 0.5794 on the private test set, placing ninth. Conclusion: These results underscore the efficacy of concept-aware algorithms in generating precise and contextually appropriate medical descriptions. The findings demonstrate that our approach significantly improves the quality of medical image captions, highlighting its potential to enhance medical image interpretation and documentation, thereby contributing to improved healthcare outcomes.
- Abstract(参考訳): 目的:本研究では,概念検出を注意機構に組み込むことにより,医用画像キャプション生成へのアプローチを改良した。
方法: この手法は, 医用画像内の重要な概念を識別するために, 洗練されたモデルを用いて, キャプション生成プロセスに組み込まれる。
結果: Swin-V2モデルを用いてF1スコアが0.58944、プライベートテストが0.61998となり,第3位が確保された。
キャプション予測タスクでは,概念統合と後処理技術によって強化されたBEiT+BioBartモデルで,検証セットで0.60589,プライベートテストセットで0.5794,9位となった。
結論: これらの結果は, 正確な, 文脈的に適切な医療記述を生成する上で, 概念認識アルゴリズムの有効性を裏付けるものである。
その結果,医用画像のキャプションの質が向上し,医用画像の解釈や文書化が向上し,医療効果の向上に寄与することが示唆された。
関連論文リスト
- UIT-DarkCow team at ImageCLEFmedical Caption 2024: Diagnostic Captioning for Radiology Images Efficiency with Transformer Models [0.0]
本研究は, 診断キャプション(診断キャプション)と呼ばれる放射線画像からの自動テキスト生成の開発に焦点をあてる。
目的は、報告の質と効率を高めるツールを提供することであり、臨床実習とディープラーニング研究の両方に大きな影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2024-05-27T09:46:09Z) - Decomposing Disease Descriptions for Enhanced Pathology Detection: A Multi-Aspect Vision-Language Pre-training Framework [43.453943987647015]
医学的な視覚言語事前訓練は研究の最前線として現れ、ゼロショットの病理診断を可能にしている。
バイオメディカルテキストの複雑なセマンティクスのため、現在の方法では、医学的画像と、非構造化レポートの重要な病理学的所見の整合に苦慮している。
これは、大きな言語モデルと医療専門家に相談することで達成される。
我々の研究は、近年の手法の精度を最大8.56%まで改善し、17.26%を目に見えるカテゴリーで改善した。
論文 参考訳(メタデータ) (2024-03-12T13:18:22Z) - MICA: Towards Explainable Skin Lesion Diagnosis via Multi-Level
Image-Concept Alignment [4.861768967055006]
本稿では, 医療画像と臨床関連概念を多層的に意味的に整合させるマルチモーダル説明型疾患診断フレームワークを提案する。
提案手法は, モデル解釈可能性を維持しながら, 概念検出と疾患診断に高い性能とラベル効率を実現する。
論文 参考訳(メタデータ) (2024-01-16T17:45:01Z) - Sam-Guided Enhanced Fine-Grained Encoding with Mixed Semantic Learning
for Medical Image Captioning [12.10183458424711]
本稿では, セグメンション・アプライス・モデル (SAM) でガイドされた新しい医用画像キャプション法について述べる。
本手法では, 医用画像の総合的情報と細部を同時に捉えるために, セマンティック学習を併用した独特な事前学習戦略を採用している。
論文 参考訳(メタデータ) (2023-11-02T05:44:13Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Customizing General-Purpose Foundation Models for Medical Report
Generation [64.31265734687182]
ラベル付き医用画像-レポートペアの不足は、ディープニューラルネットワークや大規模ニューラルネットワークの開発において大きな課題となっている。
本稿では,コンピュータビジョンと自然言語処理の基盤モデル (FM) として,市販の汎用大規模事前学習モデルのカスタマイズを提案する。
論文 参考訳(メタデータ) (2023-06-09T03:02:36Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
我々は、MedSegDiff-V2と呼ばれるトランスフォーマーベースの拡散フレームワークを提案する。
画像の異なる20種類の画像分割作業において,その有効性を検証する。
論文 参考訳(メタデータ) (2023-01-19T03:42:36Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - SSMD: Semi-Supervised Medical Image Detection with Adaptive Consistency
and Heterogeneous Perturbation [47.001609080453335]
SSMD(Semi-Supervised Medical Image Detector)を提案する。
SSMDの背後にあるモチベーションは、各位置での予測を一貫性のあるものにすることで、ラベルのないデータに対して、自由かつ効果的な監視を提供することである。
広範な実験結果から,提案したSSMDは,幅広い環境下での最先端性能を実現することが示唆された。
論文 参考訳(メタデータ) (2021-06-03T01:59:50Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。