Exploiting Frequency Correlation for Hyperspectral Image Reconstruction
- URL: http://arxiv.org/abs/2406.00683v1
- Date: Sun, 2 Jun 2024 09:36:37 GMT
- Title: Exploiting Frequency Correlation for Hyperspectral Image Reconstruction
- Authors: Muge Yan, Lizhi Wang, Lin Zhu, Hua Huang,
- Abstract summary: Deep priors have emerged as potent methods in hyperspectral image (HSI) reconstruction.
We propose a Hyperspectral Frequency Correlation (HFC) prior rooted in in-depth statistical frequency analyses of existent HSI datasets.
We then establish the frequency domain learning composed of a Spectral-wise self-Attention of Frequency (SAF) and a Spectral-spatial Interaction of Frequency (SIF)
- Score: 21.71115793248267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep priors have emerged as potent methods in hyperspectral image (HSI) reconstruction. While most methods emphasize space-domain learning using image space priors like non-local similarity, frequency-domain learning using image frequency priors remains neglected, limiting the reconstruction capability of networks. In this paper, we first propose a Hyperspectral Frequency Correlation (HFC) prior rooted in in-depth statistical frequency analyses of existent HSI datasets. Leveraging the HFC prior, we subsequently establish the frequency domain learning composed of a Spectral-wise self-Attention of Frequency (SAF) and a Spectral-spatial Interaction of Frequency (SIF) targeting low-frequency and high-frequency components, respectively. The outputs of SAF and SIF are adaptively merged by a learnable gating filter, thus achieving a thorough exploitation of image frequency priors. Integrating the frequency domain learning and the existing space domain learning, we finally develop the Correlation-driven Mixing Domains Transformer (CMDT) for HSI reconstruction. Extensive experiments highlight that our method surpasses various state-of-the-art (SOTA) methods in reconstruction quality and computational efficiency.
Related papers
- Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning [86.99944014645322]
We introduce a novel framework, Meta-Exploiting Frequency Prior for Cross-Domain Few-Shot Learning.
We decompose each query image into its high-frequency and low-frequency components, and parallel incorporate them into the feature embedding network.
Our framework establishes new state-of-the-art results on multiple cross-domain few-shot learning benchmarks.
arXiv Detail & Related papers (2024-11-03T04:02:35Z) - FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss [5.349799154834945]
This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method.
During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images.
During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images.
arXiv Detail & Related papers (2024-08-25T03:53:17Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Frequency-Adaptive Pan-Sharpening with Mixture of Experts [22.28680499480492]
We propose a novel Frequency Adaptive Mixture of Experts (FAME) learning framework for pan-sharpening.
Our method performs the best against other state-of-the-art ones and comprises a strong generalization ability for real-world scenes.
arXiv Detail & Related papers (2024-01-04T08:58:25Z) - Both Spatial and Frequency Cues Contribute to High-Fidelity Image
Inpainting [9.080472817672263]
Deep generative approaches have obtained great success in image inpainting recently.
Most generative inpainting networks suffer from either over-smooth results or aliasing artifacts.
We propose an effective Frequency-Spatial Complementary Network (FSCN) by exploiting rich semantic information in both spatial and frequency domains.
arXiv Detail & Related papers (2023-07-15T01:52:06Z) - A Scale-Arbitrary Image Super-Resolution Network Using Frequency-domain
Information [42.55177009667711]
Image super-resolution (SR) is a technique to recover lost high-frequency information in low-resolution (LR) images.
In this paper, we study image features in the frequency domain to design a novel scale-arbitrary image SR network.
arXiv Detail & Related papers (2022-12-08T15:10:49Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Cross-Modality High-Frequency Transformer for MR Image Super-Resolution [100.50972513285598]
We build an early effort to build a Transformer-based MR image super-resolution framework.
We consider two-fold domain priors including the high-frequency structure prior and the inter-modality context prior.
We establish a novel Transformer architecture, called Cross-modality high-frequency Transformer (Cohf-T), to introduce such priors into super-resolving the low-resolution images.
arXiv Detail & Related papers (2022-03-29T07:56:55Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Deep Frequency Filtering for Domain Generalization [55.66498461438285]
Deep Neural Networks (DNNs) have preferences for some frequency components in the learning process.
We propose Deep Frequency Filtering (DFF) for learning domain-generalizable features.
We show that applying our proposed DFF on a plain baseline outperforms the state-of-the-art methods on different domain generalization tasks.
arXiv Detail & Related papers (2022-03-23T05:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.