論文の概要: Profile Reconstruction from Private Sketches
- arxiv url: http://arxiv.org/abs/2406.01158v1
- Date: Mon, 3 Jun 2024 09:51:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:38:29.331502
- Title: Profile Reconstruction from Private Sketches
- Title(参考訳): プライベートスケッチからのプロファイル再構成
- Authors: Hao Wu, Rasmus Pagh,
- Abstract要約: $mathcalD$から$n$のアイテムの多重集合が与えられたとき、強調される再構成問題は、$t = 0, 1, dots, n$ に対して、$mathcalD$ のアイテムの分数 $vecf[t]$ を正確に $tfty 倍と見積もることである。
分散空間制約付き環境での個人プロファイル推定について検討し,マルチセットの更新可能なプライベートスケッチを維持したいと考える。
LPベースの手法の高速化方法を示します
- 参考スコア(独自算出の注目度): 13.929335175122265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a multiset of $n$ items from $\mathcal{D}$, the \emph{profile reconstruction} problem is to estimate, for $t = 0, 1, \dots, n$, the fraction $\vec{f}[t]$ of items in $\mathcal{D}$ that appear exactly $t$ times. We consider differentially private profile estimation in a distributed, space-constrained setting where we wish to maintain an updatable, private sketch of the multiset that allows us to compute an approximation of $\vec{f} = (\vec{f}[0], \dots, \vec{f}[n])$. Using a histogram privatized using discrete Laplace noise, we show how to ``reverse'' the noise, using an approach of Dwork et al.~(ITCS '10). We show how to speed up their LP-based technique from polynomial time to $O(d + n \log n)$, where $d = |\mathcal{D}|$, and analyze the achievable error in the $\ell_1$, $\ell_2$ and $\ell_\infty$ norms. In all cases the dependency of the error on $d$ is $O( 1 / \sqrt{d})$ -- we give an information-theoretic lower bound showing that this dependence on $d$ is asymptotically optimal among all private, updatable sketches for the profile reconstruction problem with a high-probability error guarantee.
- Abstract(参考訳): a multiset of $n$ items from $\mathcal{D}$, \emph{known reconstruction} problem for $t = 0, 1, \dots, n$, the fraction $\vec{f}[t]$ in $\mathcal{D}$ that appear exactly $t$ times。
分散空間制約付き環境では,$\vec{f} = (\vec{f}[0], \dots, \vec{f}[n])$の近似を計算できるような,マルチセットのアップダブルでプライベートなスケッチを維持したいと考える。
離散ラプラス雑音を用いて民生化したヒストグラムを用いて,Dwork et al ~ (ITCS '10。
LPベースのテクニックを多項式時間から$O(d + n \log n)$に高速化する方法を示し、$d = |\mathcal{D}|$, $\ell_1$, $\ell_2$および$\ell_\infty$ノルムで達成可能なエラーを分析する。
すべての場合、$d$上のエラーの依存関係は$O(1 / \sqrt{d})$ -- である。
関連論文リスト
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
線形スケッチを用いた行列とベクトルノルムの残差誤差推定問題について検討する。
これは、前作とほぼ同じスケッチサイズと精度で、経験的にかなり有利であることを示す。
また、スパースリカバリ問題に対して$Omega(k2/pn1-2/p)$低いバウンダリを示し、これは$mathrmpoly(log n)$ factorまで厳密である。
論文 参考訳(メタデータ) (2024-08-16T02:33:07Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
連続有限サム最小化(continuous finite-sum minimization)と呼ばれる有限サム最小化の鍵となるツイストを提案する。
我々のアプローチは$mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$で大幅に改善されます。
また、$mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$という自然な一階法は存在しないことを証明し、この方法の第一階法がほぼ密であることを示す。
論文 参考訳(メタデータ) (2024-06-07T08:26:31Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
我々は、任意のSchatten-$p$ノルムの下で、低ランク近似のためのクリロフ部分空間に基づく反復法について研究する。
我々の主な成果は、$tildeO(k/sqrtepsilon)$ matrix-vector productのみを使用するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-10T16:10:41Z) - Differentially Private $\ell_1$-norm Linear Regression with Heavy-tailed
Data [22.233705161499273]
我々は$epsilon$-DPモデルにおける$ell_1$-norm線形回帰に注目した。
我々は高い確率で$tildeO(sqrtfracdnepsilon)$の上限を達成することができることを示す。
我々のアルゴリズムは、データの各座標が有界なモーメントを持つような、よりリラックスしたケースにも拡張できる。
論文 参考訳(メタデータ) (2022-01-10T08:17:05Z) - Terminal Embeddings in Sublinear Time [14.959896180728832]
我々は、$T$を前処理して、サブ線形時間における$qinmathbbRd$の端末埋め込み画像の計算をサポートする、ほぼ線形空間のデータ構造を得る方法を示す。
この研究の主な貢献は、端末の埋め込みを計算するための新しいデータ構造を提供することです。
論文 参考訳(メタデータ) (2021-10-17T00:50:52Z) - Faster Rates of Differentially Private Stochastic Convex Optimization [7.93728520583825]
人口リスク関数がTysbakovノイズ条件(TNC)をパラメータ$theta>1$で満たす場合について検討した。
第2部では,人口リスク関数が強く凸する特殊な事例に着目した。
論文 参考訳(メタデータ) (2021-07-31T22:23:39Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
ランダムに重み付けされた$ntimes n$ bipartite graphに隠された完全マッチング$M*$を再構築する問題について検討する。
任意の小さな定数 $epsilon>0$ に対して $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ が成り立つ場合、任意の推定値の再構築誤差は $0$ から有界であることが示される。
論文 参考訳(メタデータ) (2021-03-17T00:59:33Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
対数要因まで $(varepsilon,delta)$-differently private の最適過剰人口損失は $sqrtlog(d)/n + sqrtd/varepsilon n.$ です。
損失関数がさらなる滑らかさの仮定を満たすとき、余剰損失は$sqrtlog(d)/n + (log(d)/varepsilon n)2/3で上界(対数因子まで)であることが示される。
論文 参考訳(メタデータ) (2021-03-02T06:53:44Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
我々は,バンディットフィードバックを用いてオンライン学習を学習する。
learnerは、コスト/リワード関数が"pseudo-1d"構造を許可するゼロ次オラクルのみにアクセスできる。
我々は、$T$がラウンドの数である任意のアルゴリズムの後悔のために$min(sqrtdT、T3/4)$の下限を示しています。
ランダム化オンライングラデーション下降とカーネル化指数重み法を組み合わせた新しいアルゴリズムsbcalgを提案し,疑似-1d構造を効果的に活用する。
論文 参考訳(メタデータ) (2021-02-15T08:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。