論文の概要: Pulmonary Embolism Mortality Prediction Using Multimodal Learning Based on Computed Tomography Angiography and Clinical Data
- arxiv url: http://arxiv.org/abs/2406.01302v1
- Date: Mon, 3 Jun 2024 13:10:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 23:09:15.608406
- Title: Pulmonary Embolism Mortality Prediction Using Multimodal Learning Based on Computed Tomography Angiography and Clinical Data
- Title(参考訳): CTと臨床データを用いたマルチモーダルラーニングによる肺塞栓症の死亡率予測
- Authors: Zhusi Zhong, Helen Zhang, Fayez H. Fayad, Andrew C. Lancaster, John Sollee, Shreyas Kulkarni, Cheng Ting Lin, Jie Li, Xinbo Gao, Scott Collinsa, Sun H. Ahn, Harrison X. Bai, Zhicheng Jiao, Michael K. Atalay,
- Abstract要約: 本研究の目的は,CTPA(CTPA),臨床データ,肺重症度指数(PESI)スコアを用いて深層学習モデルを構築し,PE死亡率を予測することである。
- 参考スコア(独自算出の注目度): 32.48703514659044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: Pulmonary embolism (PE) is a significant cause of mortality in the United States. The objective of this study is to implement deep learning (DL) models using Computed Tomography Pulmonary Angiography (CTPA), clinical data, and PE Severity Index (PESI) scores to predict PE mortality. Materials and Methods: 918 patients (median age 64 years, range 13-99 years, 52% female) with 3,978 CTPAs were identified via retrospective review across three institutions. To predict survival, an AI model was used to extract disease-related imaging features from CTPAs. Imaging features and/or clinical variables were then incorporated into DL models to predict survival outcomes. Four models were developed as follows: (1) using CTPA imaging features only; (2) using clinical variables only; (3) multimodal, integrating both CTPA and clinical variables; and (4) multimodal fused with calculated PESI score. Performance and contribution from each modality were evaluated using concordance index (c-index) and Net Reclassification Improvement, respectively. Performance was compared to PESI predictions using the Wilcoxon signed-rank test. Kaplan-Meier analysis was performed to stratify patients into high- and low-risk groups. Additional factor-risk analysis was conducted to account for right ventricular (RV) dysfunction. Results: For both data sets, the PESI-fused and multimodal models achieved higher c-indices than PESI alone. Following stratification of patients into high- and low-risk groups by multimodal and PESI-fused models, mortality outcomes differed significantly (both p<0.001). A strong correlation was found between high-risk grouping and RV dysfunction. Conclusions: Multiomic DL models incorporating CTPA features, clinical data, and PESI achieved higher c-indices than PESI alone for PE survival prediction.
- Abstract(参考訳): 目的: 肺塞栓症(PE)はアメリカにおいて重大な死因である。
本研究の目的は,CTPA(CTPA),臨床データ,PESI(PE Severity Index)スコアを用いたディープラーニング(DL)モデルを用いてPE死亡率を予測することである。
対象と方法:3施設の振り返り調査により918例(年齢64歳,13-99歳,女性52%)のCTPA3,978例が確認された。
生存を予測するため、CTPAから疾患関連画像の特徴を抽出するためにAIモデルが使用された。
画像特徴および臨床変数をDLモデルに組み込んで生存率を予測した。
1)CTPA画像のみの使用,(2)臨床変数のみの使用,(3)CTPAと臨床変数を統合したマルチモーダル,(4)PESIスコアを算出したマルチモーダルの4つのモデルを開発した。
コーマンス指数 (c-index) とネット再分類改善 (Net Reclassification Improvement) を用いて各モードのパフォーマンスと寄与を評価した。
性能はウィルコクソン符号ランク試験を用いてPESI予測と比較した。
カプラン・マイアー分析を行い,高リスク群と低リスク群に分類した。
右室機能障害を考慮し追加の因子リスク分析を行った。
結果: PESI融合モデルとマルチモーダルモデルでは, PESI単独よりも高いc-指標が得られた。
マルチモーダルおよびPESI融合モデルによる高リスク群と低リスク群への成層化後,死亡率は有意に異なっていた(p<0.001。
高リスクグループ化とRV機能障害との間には強い相関関係が認められた。
結論:CTPAの特徴,臨床データ,PESIを取り入れた多相DLモデルはPESI単独よりも高いc-指標をPE生存予測のために達成した。
関連論文リスト
- Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Fusion of Diffusion Weighted MRI and Clinical Data for Predicting
Functional Outcome after Acute Ischemic Stroke with Deep Contrastive Learning [1.4149937986822438]
ストロークは、25歳以上の成人の約4分の1に影響する一般的な神経疾患である。
AUCでは0.87,0.80,80.45%,F1スコアでは80.45%,精度では0。
論文 参考訳(メタデータ) (2024-02-16T18:51:42Z) - Multimodal Deep Learning for Personalized Renal Cell Carcinoma
Prognosis: Integrating CT Imaging and Clinical Data [3.790959613880792]
腎細胞癌は生存率の低い重要な世界的な健康上の課題である。
本研究の目的は, 腎細胞癌患者の生存確率を予測できる包括的深層学習モデルを考案することであった。
提案フレームワークは,3次元画像特徴抽出器,臨床変数選択,生存予測の3つのモジュールから構成される。
論文 参考訳(メタデータ) (2023-07-07T13:09:07Z) - Deep Learning for Predicting Progression of Patellofemoral
Osteoarthritis Based on Lateral Knee Radiographs, Demographic Data and
Symptomatic Assessments [1.1549572298362785]
本研究はMOST研究のベースラインから被験者(被験者1832名,膝3276名)を抽出した。
PF関節領域は, 側膝X線上の自動ランドマーク検出ツール(BoneFinder)を用いて同定した。
年齢、性別、BMIおよびWOMACスコア、および大腿骨関節X線学的関節炎ステージ(KLスコア)の危険因子について
論文 参考訳(メタデータ) (2023-05-10T06:43:33Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
肺がんは世界中のがん死亡の原因であり、効果的な治療法を設計するための死亡リスクを理解することの重要性を強調している。
NLST(National Lung Screening Trial)は、肺がん患者の死亡リスクを定量化するために、CTテクスチャ解析を用いている。
本稿では,SCADペナルティを組み込んで重要なテクスチャ特徴を抽出し,深層ニューラルネットワークを用いてモデルの非パラメトリック成分を推定する,Pentalized Deep partially Linear Cox Model (Penalized DPLC)を提案する。
論文 参考訳(メタデータ) (2023-03-09T15:38:16Z) - Mortality Prediction with Adaptive Feature Importance Recalibration for
Peritoneal Dialysis Patients: a deep-learning-based study on a real-world
longitudinal follow-up dataset [19.7915762858399]
終末期腎疾患(ESRD)に対する腹膜透析(PD)は最も広く用いられている生命維持療法の1つである
本稿では,リアルタイム,個別化,解釈可能な死亡予測モデル - AICare のためのディープラーニングモデルを開発することを目的とする。
本研究は656 PD患者13,091 人の臨床経過と人口統計データを収集した。
論文 参考訳(メタデータ) (2023-01-17T13:17:54Z) - Survival Analysis for Idiopathic Pulmonary Fibrosis using CT Images and
Incomplete Clinical Data [17.162038700963418]
特発性肺線維症(IPF)は線維性肺疾患である。
肺のCTスキャンはIPF患者の臨床的評価を通知し、疾患の進行に関する関連する情報を含む。
臨床および画像データを用いたIPF患者の生存率を予測するために,ニューラルネットワークとメモリバンクを用いたマルチモーダル手法を提案する。
論文 参考訳(メタデータ) (2022-03-21T23:48:47Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。