論文の概要: Using Constraints to Discover Sparse and Alternative Subgroup Descriptions
- arxiv url: http://arxiv.org/abs/2406.01411v1
- Date: Mon, 3 Jun 2024 15:10:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:30:12.311445
- Title: Using Constraints to Discover Sparse and Alternative Subgroup Descriptions
- Title(参考訳): 制約を用いたスパースと代替サブグループ記述の発見
- Authors: Jakob Bach,
- Abstract要約: サブグループ発見法により、ユーザはデータセットで興味深い領域の簡単な記述を取得できる。
まず、サブグループ記述で使用される機能の数を制限し、後者はスパース化します。
第二に、与えられたサブグループと類似したデータオブジェクトの集合をカバーするが、異なる特徴を持つ代替サブグループ記述を見つけるための新しい最適化問題を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Subgroup-discovery methods allow users to obtain simple descriptions of interesting regions in a dataset. Using constraints in subgroup discovery can enhance interpretability even further. In this article, we focus on two types of constraints: First, we limit the number of features used in subgroup descriptions, making the latter sparse. Second, we propose the novel optimization problem of finding alternative subgroup descriptions, which cover a similar set of data objects as a given subgroup but use different features. We describe how to integrate both constraint types into heuristic subgroup-discovery methods. Further, we propose a novel Satisfiability Modulo Theories (SMT) formulation of subgroup discovery as a white-box optimization problem, which allows solver-based search for subgroups and is open to a variety of constraint types. Additionally, we prove that both constraint types lead to an NP-hard optimization problem. Finally, we employ 27 binary-classification datasets to compare heuristic and solver-based search for unconstrained and constrained subgroup discovery. We observe that heuristic search methods often yield high-quality subgroups within a short runtime, also in scenarios with constraints.
- Abstract(参考訳): サブグループ発見法により、ユーザはデータセットで興味深い領域の簡単な記述を取得できる。
サブグループ発見における制約の使用は、さらに解釈可能性を高めることができる。
まず、サブグループ記述で使用される機能の数を制限することで、後者はスパース化します。
第二に、与えられたサブグループと類似したデータオブジェクトの集合をカバーするが、異なる特徴を持つ代替サブグループ記述を見つけるための新しい最適化問題を提案する。
両制約型をヒューリスティックなサブグループ発見手法に統合する方法を述べる。
さらに, ホワイトボックス最適化問題として, サブグループ探索のSMT (Satifiability Modulo Theories) の新たな定式化を提案する。
さらに、両制約型がNP-ハード最適化問題につながることを証明した。
最後に,27のバイナリ分類データセットを用いて,非制約・制約付きサブグループ探索のヒューリスティック検索とソルバ検索を比較した。
ヒューリスティック探索法は,制約のあるシナリオにおいても,短時間で高品質なサブグループを生成することが多い。
関連論文リスト
- Clustered Orienteering Problem with Subgroups [6.961946145048321]
サブグループによるクラスター配向問題(COPS)
我々の新しい定式化は、以前の2つのよく知られた変種をモデル化し、解決する能力を持っていることを示す。
論文 参考訳(メタデータ) (2023-12-26T18:28:25Z) - Composite Feature Selection using Deep Ensembles [130.72015919510605]
本研究では,事前定義されたグループ化を伴わない予測的特徴群発見の問題について検討する。
本稿では,特徴選択モデルのアンサンブルを用いて予測グループを探索する,新しいディープラーニングアーキテクチャを提案する。
発見群と基底真理の類似性を測定するための新しい尺度を提案する。
論文 参考訳(メタデータ) (2022-11-01T17:49:40Z) - Cluster Explanation via Polyhedral Descriptions [0.0]
クラスタリングは教師なしの学習問題であり、競合しないデータポイントを同様の機能を持つグループに分割することを目的としている。
従来のクラスタリングアルゴリズムは、グループ割り当ての解釈可能性ではなく、正確性に重点を置いているため、グループに対する限られた洞察を提供する。
本稿では,各クラスタのまわりにポリヘドラを配置し,結果として生じるポリヘドラの複雑さを最小化して,クラスタを説明するための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-10-17T07:26:44Z) - Interpretable Clustering via Multi-Polytope Machines [12.69310440882225]
本稿では,クラスタデータポイントと,検出したクラスタの周辺にポリトープを構築して説明する,解釈可能なクラスタリングのための新しい手法を提案する。
我々は,我々の手法を,人工クラスタリングと実世界のクラスタリングの一連の問題にベンチマークし,我々のアルゴリズムは,アート解釈可能で非解釈可能なクラスタリングアルゴリズムの状態を上回ります。
論文 参考訳(メタデータ) (2021-12-10T16:36:32Z) - Local versions of sum-of-norms clustering [77.34726150561087]
本手法はボールモデルにおいて任意に閉じた球を分離できることを示す。
我々は、不連結連結集合のクラスタリングで発生する誤差に定量的な有界性を証明した。
論文 参考訳(メタデータ) (2021-09-20T14:45:29Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
ファジィ(fuzzy, soft objective)は、よく知られた$k$-means問題の一般化である。
クエリを少なくすることで、問題の解決が容易になる。
論文 参考訳(メタデータ) (2021-06-04T02:32:26Z) - Certifiably Polynomial Algorithm for Best Group Subset Selection [0.9667631210393929]
ベストグループサブセットの選択は、応答変数の最良の解釈可能性を達成するために重複しないグループの小さな部分を選択することを目的としている。
有効群を反復的に検出し,無力群を除外するグループスプライシングアルゴリズムを提案する。
提案手法の効率と精度を,合成データセットと実世界のデータセットを比較して検証する。
論文 参考訳(メタデータ) (2021-04-23T03:05:11Z) - Robust subgroup discovery [0.2578242050187029]
最小記述長原理を用いて最適ロバスト部分群発見の問題を定式化する。
RSDは、良いサブグループリストを見つけ、各イテレーションで最も重要なサブグループが追加されたことを保証します。
我々は,rsdが従来のサブグループ集合発見法を上回っている54のデータセットを,品質とサブグループリストサイズの観点から実証的に示す。
論文 参考訳(メタデータ) (2021-03-25T09:04:13Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
本稿では,適応グラフ正規化に基づくマルチビュークラスタリング手法を提案する。
5つの多視点ベンチマークの実験結果から,提案手法が他の最先端手法をクリアマージンで上回ることを示す。
論文 参考訳(メタデータ) (2020-08-23T08:25:06Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
本稿では,2値データのクラスタリング手法について検討し,まず,クラスタのコンパクトさを計測するアグリゲーション基準を定義した。
近隣地域と人口動態最適化メタヒューリスティックスを用いた5つの新しいオリジナル手法が導入された。
準モンテカルロ実験によって生成された16のデータテーブルから、L1の相似性と階層的クラスタリング、k-means(メドイドやPAM)の1つのアグリゲーションの比較を行う。
論文 参考訳(メタデータ) (2020-01-06T23:33:31Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
本稿では,二元的ユーザフィードバックから一組のアイテムをクラスタリングする問題について検討する。
最小クラスタ回復誤差率のアルゴリズムを考案する。
適応選択のために,情報理論的誤差下界の導出にインスパイアされたアルゴリズムを開発する。
論文 参考訳(メタデータ) (2019-10-14T09:18:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。