Verification of entangled states under noisy measurements
- URL: http://arxiv.org/abs/2406.01470v1
- Date: Mon, 3 Jun 2024 15:59:02 GMT
- Title: Verification of entangled states under noisy measurements
- Authors: Lan Zhang, Yinfei Li, Ye-Chao Liu, Jiangwei Shang,
- Abstract summary: Entanglement plays an indispensable role in numerous quantum information and quantum computation tasks.
In recent years, quantum state verification has received increasing attention, yet the challenge of addressing noise effects in implementing this approach remains unsolved.
We provide a systematic assessment of the performance of quantum state verification protocols in the presence of measurement noise.
- Score: 3.8094794637714027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement plays an indispensable role in numerous quantum information and quantum computation tasks, underscoring the need for efficiently verifying entangled states. In recent years, quantum state verification has received increasing attention, yet the challenge of addressing noise effects in implementing this approach remains unsolved. In this work, we provide a systematic assessment of the performance of quantum state verification protocols in the presence of measurement noise. Based on the analysis, a necessary and sufficient condition is provided to uniquely identify the target state under noisy measurements. Moreover, we propose a symmetric hypothesis testing verification algorithm with noisy measurements. Subsequently, using a noisy nonadaptive verification strategy of GHZ and stabilizer states, the noise effects on the verification efficiency are illustrated. From both analytical and numerical perspectives, we demonstrate that the noisy verification protocol exhibits a negative quadratic relationship between the sample complexity and the infidelity. Our method can be easily applied to real experimental settings, thereby demonstrating its promising prospects.
Related papers
- Optimal Quantum Purity Amplification [2.05170973574812]
Quantum purity amplification (QPA) offers a novel approach to counteract the pervasive noise that degrades quantum states.
We present the optimal QPA protocol for general quantum systems against global depolarizing noise.
Our findings suggest that QPA could improve the performance of quantum information processing tasks.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - Deterministic entanglement swapping of W states [0.3277163122167434]
We propose a deterministic entanglement swapping protocol for generating a shared three-qubit W state between two remote parties.
We present a detailed quantum circuit design, implemented using the Qiskit simulator, that outlines the preparation of W states and the execution of joint measurements.
We demonstrate the effectiveness of our proposed protocol, offering a practical solution for high-fidelity W state generation in real-world quantum communication scenarios.
arXiv Detail & Related papers (2024-07-04T03:27:12Z) - Noise-mitigated randomized measurements and self-calibrating shadow
estimation [0.0]
We introduce an error-mitigated method of randomized measurements, giving rise to a robust shadow estimation procedure.
On the practical side, we show that error mitigation and shadow estimation can be carried out using the same session of quantum experiments.
arXiv Detail & Related papers (2024-03-07T18:53:56Z) - Semi-device independent nonlocality certification for near-term quantum
networks [46.37108901286964]
Bell tests are the most rigorous method for verifying entanglement in quantum networks.
If there is any signaling between the parties, then the violation of Bell inequalities can no longer be used.
We propose a semi-device independent protocol that allows us to numerically correct for effects of correlations in experimental probability distributions.
arXiv Detail & Related papers (2023-05-23T14:39:08Z) - Robust and efficient verification of graph states in blind
measurement-based quantum computation [52.70359447203418]
Blind quantum computation (BQC) is a secure quantum computation method that protects the privacy of clients.
It is crucial to verify whether the resource graph states are accurately prepared in the adversarial scenario.
Here, we propose a robust and efficient protocol for verifying arbitrary graph states with any prime local dimension.
arXiv Detail & Related papers (2023-05-18T06:24:45Z) - Control-enhanced quantum metrology under Markovian noise [10.626708718934022]
We propose a control-enhanced quantum metrology scheme to defend against realistic noises.
As a demonstration, we apply it to the problem of frequency estimation under several typical Markovian noise channels.
We show that our scheme performs better and can improve the estimation precision up to around one order of magnitude.
arXiv Detail & Related papers (2022-11-03T13:39:47Z) - Quantum state-preparation control in noisy environment via most-likely
paths [1.9260081982051918]
We consider an alternative view of a noise-affected open quantum system, where the average dynamics can be unravelled into hypothetical noisy trajectories.
We adopt the most-likely path technique for quantum state-preparation, constructing a path for noise variables and finding control functions.
As a proof of concept, we apply the method to a qubit-state preparation under a dephasing noise and analytically solve for controlled Rabi drives for arbitrary target states.
arXiv Detail & Related papers (2022-09-27T05:42:09Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Sample-efficient device-independent quantum state verification and
certification [68.8204255655161]
Authentication of quantum sources is a crucial task in building reliable and efficient protocols for quantum-information processing.
We develop a systematic approach to device-independent verification of quantum states free of IID assumptions in the finite copy regime.
We show that device-independent verification can be performed with optimal sample efficiency.
arXiv Detail & Related papers (2021-05-12T17:48:04Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.