論文の概要: TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment
- arxiv url: http://arxiv.org/abs/2406.01638v1
- Date: Mon, 3 Jun 2024 00:27:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:21:41.905517
- Title: TimeCMA: Towards LLM-Empowered Time Series Forecasting via Cross-Modality Alignment
- Title(参考訳): TimeCMA: クロスモーダルアライメントによるLCMを利用した時系列予測を目指して
- Authors: Chenxi Liu, Qianxiong Xu, Hao Miao, Sun Yang, Lingzheng Zhang, Cheng Long, Ziyue Li, Rui Zhao,
- Abstract要約: TimeCMAは、モーダリティ間のアライメントを伴う時系列予測のフレームワークである。
実データに関する大規模な実験は、提案したフレームワークの精度と効率に関する洞察を提供する。
- 参考スコア(独自算出の注目度): 21.690191536424567
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread adoption of scalable mobile sensing has led to large amounts of time series data for real-world applications. A fundamental application is multivariate time series forecasting (MTSF), which aims to predict future time series values based on historical observations. Existing MTSF methods suffer from limited parameterization and small-scale training data. Recently, Large language models (LLMs) have been introduced in time series, which achieve promising forecasting performance but incur heavy computational costs. To solve these challenges, we propose TimeCMA, an LLM-empowered framework for time series forecasting with cross-modality alignment. We design a dual-modality encoding module with two branches, where the time series encoding branch extracts relatively low-quality yet pure embeddings of time series through an inverted Transformer. In addition, the LLM-empowered encoding branch wraps the same time series as prompts to obtain high-quality yet entangled prompt embeddings via a Pre-trained LLM. Then, we design a cross-modality alignment module to retrieve high-quality and pure time series embeddings from the prompt embeddings. Moreover, we develop a time series forecasting module to decode the aligned embeddings while capturing dependencies among multiple variables for forecasting. Notably, we tailor the prompt to encode sufficient temporal information into a last token and design the last token embedding storage to reduce computational costs. Extensive experiments on real data offer insight into the accuracy and efficiency of the proposed framework.
- Abstract(参考訳): スケーラブルなモバイルセンシングの普及は、現実世界のアプリケーションに大量の時系列データをもたらした。
多変量時系列予測 (MTSF) は, 過去の観測結果に基づいて, 将来の時系列値を予測することを目的としている。
既存のMTSF法は、パラメータ化の制限と小規模な訓練データに悩まされている。
近年,予測性能が期待できるが計算コストが重い大規模言語モデル (LLM) が時系列で導入されている。
これらの課題を解決するために,LLMを利用した時系列予測フレームワークであるTimeCMAを提案する。
2つの分岐を持つ双対モダリティ符号化モジュールを設計し、逆変換器を用いて時系列の比較的低品質で純粋な埋め込みを抽出する。
さらに、LLMを利用したエンコード分岐は、プレトレーニングLDMを介して高品質だが絡み合ったプロンプト埋め込みを得るよう促すのと同じ時系列をラップする。
そこで我々は,高速な埋め込みから高品質で純粋な時系列埋め込みを検索するためのモジュールを設計する。
さらに,複数の変数間の依存関係を抽出し,複数の変数間の関係を予測し,関係する埋め込みをデコードする時系列予測モジュールを開発した。
特に、時間情報を最後のトークンにエンコードするプロンプトを調整し、計算コストを削減するために最後のトークン埋め込みストレージを設計する。
実データに関する大規模な実験は、提案したフレームワークの精度と効率に関する洞察を提供する。
関連論文リスト
- Adapting Large Language Models for Time Series Modeling via a Novel Parameter-efficient Adaptation Method [9.412920379798928]
時系列モデリングは多くの実世界のアプリケーションにおいて重要な意味を持つ。
我々は時系列と自然言語のモダリティを調整するためのTime-LlaMAフレームワークを提案する。
本稿では,提案手法がSOTA(State-of-the-art)性能を実現することを示す。
論文 参考訳(メタデータ) (2025-02-19T13:52:26Z) - TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAPは、時系列データのコンテキスト化ツールとしてLarge Language Models(LLM)を創造的に利用する時系列処理フレームワークである。
TimeCAPには2つの独立したLCMエージェントが組み込まれており、1つは時系列のコンテキストをキャプチャするテキスト要約を生成し、もう1つはより情報のある予測を行うためにこのリッチな要約を使用する。
実世界のデータセットによる実験結果から,TimeCAPは時系列イベント予測の最先端手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2025-02-17T04:17:27Z) - Rethinking Time Series Forecasting with LLMs via Nearest Neighbor Contrastive Learning [1.7892194562398749]
本稿では, NNCL-TLLM: Nearest Neighbor Contrastive Learning for Time Series forecasting via Large Language Modelsを提案する。
まず、時系列互換テキストプロトタイプを作成し、各テキストプロトタイプは、その近傍に単語トークンを埋め込んだり、時系列の特徴を表現したりする。
次に、LLMの層正規化と位置埋め込みを微調整し、他の層をそのままに保ち、トレーニング可能なパラメータを減らし、計算コストを削減した。
論文 参考訳(メタデータ) (2024-12-06T06:32:47Z) - Hierarchical Multimodal LLMs with Semantic Space Alignment for Enhanced Time Series Classification [4.5939667818289385]
HiTimeは階層的なマルチモーダルモデルであり、時間的情報を大きな言語モデルにシームレスに統合する。
本研究は, 時間的特徴をLCMに組み込むことにより, 時系列解析の進歩に寄与する可能性が示唆された。
論文 参考訳(メタデータ) (2024-10-24T12:32:19Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
MTSFのためのクロスモーダルLCMファインチューニング(CALF)フレームワークを提案する。
分散の相違を低減するため,クロスモーダルマッチングモジュールを開発した。
CALFは、長期および短期の予測タスクの最先端のパフォーマンスを確立する。
論文 参考訳(メタデータ) (2024-03-12T04:04:38Z) - Multi-Patch Prediction: Adapting LLMs for Time Series Representation
Learning [22.28251586213348]
aLLM4TSは、時系列表現学習にLarge Language Models(LLM)を適用する革新的なフレームワークである。
われわれのフレームワークの特筆すべき要素はパッチワイドデコーディング層である。
論文 参考訳(メタデータ) (2024-02-07T13:51:26Z) - AutoTimes: Autoregressive Time Series Forecasters via Large Language Models [67.83502953961505]
AutoTimesは時系列を言語トークンの埋め込み空間に投影し、任意の長さで将来予測を生成する。
時系列をプロンプトとして定式化し、ルックバックウィンドウを越えて予測のコンテキストを拡張する。
AutoTimesは、トレーニング可能なパラメータが0.1%、トレーニング/推論のスピードアップが5ドル以上で最先端を実現している。
論文 参考訳(メタデータ) (2024-02-04T06:59:21Z) - Large Language Models Are Zero-Shot Time Series Forecasters [48.73953666153385]
時系列を数値桁の列として符号化することにより、テキストの次トーケン予測として時系列予測をフレーム化することができる。
GPT-3 や LLaMA-2 のような大規模言語モデル (LLM) は、ダウンストリームタスクでトレーニングされた目的構築された時系列モデルの性能に匹敵する、あるいはそれ以上のレベルにおいて、驚くほどゼロショット・エクスポレート・時系列を生成できる。
論文 参考訳(メタデータ) (2023-10-11T19:01:28Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - TimeMAE: Self-Supervised Representations of Time Series with Decoupled
Masked Autoencoders [55.00904795497786]
トランスフォーマネットワークに基づく転送可能な時系列表現を学習するための,新しい自己教師型パラダイムであるTimeMAEを提案する。
TimeMAEは双方向符号化方式を用いて時系列の豊富な文脈表現を学習する。
新たに挿入されたマスク埋め込みによって生じる不一致を解消するため、分離されたオートエンコーダアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-03-01T08:33:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。