論文の概要: Towards Harnessing Large Language Models for Comprehension of Conversational Grounding
- arxiv url: http://arxiv.org/abs/2406.01749v1
- Date: Mon, 3 Jun 2024 19:34:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:02:09.589824
- Title: Towards Harnessing Large Language Models for Comprehension of Conversational Grounding
- Title(参考訳): 対話的接地理解のための大規模言語モデルの構築に向けて
- Authors: Kristiina Jokinen, Phillip Schneider, Taiga Mori,
- Abstract要約: 本研究では,対話を分類する際の大規模言語モデルの能力について,明示的あるいは暗黙的な接地と,接地された知識要素の予測に関する考察を行った。
実験の結果,2つの課題において大きな言語モデルが直面する課題が明らかになった。
これらのイニシアチブは、会話における基礎知識の複雑さを扱うために、より効果的な対話システムを開発することを目的としている。
- 参考スコア(独自算出の注目度): 1.8434042562191812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational grounding is a collaborative mechanism for establishing mutual knowledge among participants engaged in a dialogue. This experimental study analyzes information-seeking conversations to investigate the capabilities of large language models in classifying dialogue turns related to explicit or implicit grounding and predicting grounded knowledge elements. Our experimental results reveal challenges encountered by large language models in the two tasks and discuss ongoing research efforts to enhance large language model-based conversational grounding comprehension through pipeline architectures and knowledge bases. These initiatives aim to develop more effective dialogue systems that are better equipped to handle the intricacies of grounded knowledge in conversations.
- Abstract(参考訳): 会話基盤とは、対話を行う参加者間の相互知識を確立するための協調的なメカニズムである。
本研究では、情報探索会話を分析し、暗黙的または暗黙的な接地と接地的知識要素の予測に関連する対話を分類する際の大規模言語モデルの能力について検討する。
実験の結果,2つのタスクにおいて,大規模言語モデルが直面する課題を明らかにし,パイプラインアーキテクチャや知識ベースを通じて,大規模言語モデルに基づく会話基盤の理解を強化するための研究が進行中であることを明らかにした。
これらのイニシアチブは、会話における基礎知識の複雑さを扱うために、より効果的な対話システムを開発することを目的としている。
関連論文リスト
- Bridging Information Gaps in Dialogues With Grounded Exchanges Using Knowledge Graphs [4.449835214520727]
対話的接地のための大規模言語モデルの可能性について検討する。
私たちのアプローチでは、5つの知識領域にまたがる人間の会話を注釈付けして、BridgeKGと呼ばれる対話コーパスを作成します。
本研究は,これらのモデルが会話ベースタスクや一般的な予測誤りに対して,コンテキスト内学習をどのように利用するかについての知見を提供する。
論文 参考訳(メタデータ) (2024-08-02T08:07:15Z) - Conversational Grounding: Annotation and Analysis of Grounding Acts and Grounding Units [3.805394793605586]
本稿では, 接地法, 接地法, 接地単位を用いた2つの対話コーパスのアノテーションと, それらの接地度を測る尺度について述べる。
我々の研究は、日常の対話において機械との会話をよりよく理解し、信頼性を高めることを目的としている。
論文 参考訳(メタデータ) (2024-03-25T10:39:18Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chatは、知識グラフ上のポインタネットワークと、事前訓練された言語モデルを組み合わせた、ポインタネットワーク誘導生成対話モデルである。
PK-Chatが対話で生成した単語は、単語リストの予測と外部知識グラフ知識の直接予測から導かれる。
PK-Chatに基づく対話システムは、地球科学の学術シナリオ向けに構築されている。
論文 参考訳(メタデータ) (2023-04-02T18:23:13Z) - Position Matters! Empirical Study of Order Effect in Knowledge-grounded
Dialogue [54.98184262897166]
本稿では,知識集合の順序が自己回帰対話システムの応答にどのように影響するかを検討する。
本稿では,知識入力の位置埋め込みを変更することで,注文効果を緩和する,シンプルで斬新な手法を提案する。
論文 参考訳(メタデータ) (2023-02-12T10:13:00Z) - Knowledge Augmented BERT Mutual Network in Multi-turn Spoken Dialogues [6.4144180888492075]
本稿では,2つのSLUタスク間の対話コンテキストを相互に活用するために,BERTベースのジョイントモデルとナレッジアテンションモジュールを備えることを提案する。
さらにゲーティング機構を利用して、無関係な知識三重項をフィルタリングし、気を散らす理解を回避する。
2つの複雑なマルチターン対話データセットの実験的結果は、2つのSLUタスクをフィルター付き知識と対話コンテキストで相互にモデル化することで実証された。
論文 参考訳(メタデータ) (2022-02-23T04:03:35Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
自然言語を理解し、人間と対話するための訓練機械は、人工知能の解明と本質的なタスクである。
本稿では,対話理解タスクにおける対話モデリングの技術的視点から,過去の手法を概観する。
さらに,対話シナリオにおけるPrLMの強化に使用される対話関連事前学習手法を分類する。
論文 参考訳(メタデータ) (2021-10-11T03:52:37Z) - Retrieval-Free Knowledge-Grounded Dialogue Response Generation with
Adapters [52.725200145600624]
軽量アダプタで事前学習した言語モデルに事前知識を注入し、検索プロセスをバイパスする KnowExpert を提案する。
実験結果から,KnowExpertは検索ベースラインと相容れない性能を示した。
論文 参考訳(メタデータ) (2021-05-13T12:33:23Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
対話モデリングの観点から,従来の手法を検討した。
対話理解タスクで広く使用されている対話モデリングの3つの典型的なパターンについて議論します。
論文 参考訳(メタデータ) (2021-03-04T15:50:17Z) - Multi-turn Dialogue Reading Comprehension with Pivot Turns and Knowledge [43.352833140317486]
マルチターン対話読解は、機械に対話コンテキストを読み、応答選択や回答質問といったタスクを解くことを目的としている。
この研究は、ピボット発話として重要なターンを抽出することで、上記の2つの課題に対処する最初の試みである。
本稿では,対話理解のためのトランスフォーマーに基づく言語モデル上に,ピボット指向の深層選択モデル(PoDS)を提案する。
論文 参考訳(メタデータ) (2021-02-10T15:00:12Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
課題指向対話システムは、学術・産業社会でますます注目を集めている。
タスク指向ダイアログシステムにおける3つの重要なトピックについて論じる。(1)低リソース環境でのダイアログモデリングを容易にするデータ効率の改善、(2)ダイアログポリシー学習のためのマルチターンダイナミクスのモデリング、(3)ダイアログモデルへのドメイン知識の統合。
論文 参考訳(メタデータ) (2020-03-17T01:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。