Multi-agent assignment via state augmented reinforcement learning
- URL: http://arxiv.org/abs/2406.01782v1
- Date: Mon, 3 Jun 2024 20:56:12 GMT
- Title: Multi-agent assignment via state augmented reinforcement learning
- Authors: Leopoldo Agorio, Sean Van Alen, Miguel Calvo-Fullana, Santiago Paternain, Juan Andres Bazerque,
- Abstract summary: We address the conflicting requirements of a multi-agent assignment problem through constrained reinforcement learning.
We recur to a state augmentation approach in which the oscillation of dual variables is exploited by agents to alternate between tasks.
- Score: 3.4992411324493515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the conflicting requirements of a multi-agent assignment problem through constrained reinforcement learning, emphasizing the inadequacy of standard regularization techniques for this purpose. Instead, we recur to a state augmentation approach in which the oscillation of dual variables is exploited by agents to alternate between tasks. In addition, we coordinate the actions of the multiple agents acting on their local states through these multipliers, which are gossiped through a communication network, eliminating the need to access other agent states. By these means, we propose a distributed multi-agent assignment protocol with theoretical feasibility guarantees that we corroborate in a monitoring numerical experiment.
Related papers
- Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
Generalization poses a significant challenge in Multi-agent Reinforcement Learning (MARL)
The extent to which an agent is influenced by unseen co-players depends on the agent's policy and the specific scenario.
We present the Level of Influence (LoI), a metric quantifying the interaction intensity among agents within a given scenario and environment.
arXiv Detail & Related papers (2023-10-11T06:09:26Z) - Graph Exploration for Effective Multi-agent Q-Learning [46.723361065955544]
This paper proposes an exploration technique for multi-agent reinforcement learning (MARL) with graph-based communication among agents.
We assume the individual rewards received by the agents are independent of the actions by the other agents, while their policies are coupled.
In the proposed framework, neighbouring agents collaborate to estimate the uncertainty about the state-action space in order to execute more efficient explorative behaviour.
arXiv Detail & Related papers (2023-04-19T10:28:28Z) - A Variational Approach to Mutual Information-Based Coordination for
Multi-Agent Reinforcement Learning [17.893310647034188]
We propose a new mutual information framework for multi-agent reinforcement learning.
Applying policy to maximize the derived lower bound, we propose a practical algorithm named variational maximum mutual information multi-agent actor-critic.
arXiv Detail & Related papers (2023-03-01T12:21:30Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
We propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL.
To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy.
We show that LDSA learns reasonable and effective subtask assignment for better collaboration.
arXiv Detail & Related papers (2022-05-05T10:46:16Z) - Depthwise Convolution for Multi-Agent Communication with Enhanced
Mean-Field Approximation [9.854975702211165]
We propose a new method based on local communication learning to tackle the multi-agent RL (MARL) challenge.
First, we design a new communication protocol that exploits the ability of depthwise convolution to efficiently extract local relations.
Second, we introduce the mean-field approximation into our method to reduce the scale of agent interactions.
arXiv Detail & Related papers (2022-03-06T07:42:43Z) - HAVEN: Hierarchical Cooperative Multi-Agent Reinforcement Learning with
Dual Coordination Mechanism [17.993973801986677]
Multi-agent reinforcement learning often suffers from the exponentially larger action space caused by a large number of agents.
We propose a novel value decomposition framework HAVEN based on hierarchical reinforcement learning for the fully cooperative multi-agent problems.
arXiv Detail & Related papers (2021-10-14T10:43:47Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
We make the first attempt to explore a universal multi-agent reinforcement learning pipeline, designing one single architecture to fit tasks.
Unlike previous RNN-based models, we utilize a transformer-based model to generate a flexible policy.
The proposed model, named as Universal Policy Decoupling Transformer (UPDeT), further relaxes the action restriction and makes the multi-agent task's decision process more explainable.
arXiv Detail & Related papers (2021-01-20T07:24:24Z) - Learning Safe Multi-Agent Control with Decentralized Neural Barrier
Certificates [19.261536710315028]
We study the multi-agent safe control problem where agents should avoid collisions to static obstacles and collisions with each other while reaching their goals.
Our core idea is to learn the multi-agent control policy jointly with learning the control barrier functions as safety certificates.
We propose a novel joint-learning framework that can be implemented in a decentralized fashion, with generalization guarantees for certain function classes.
arXiv Detail & Related papers (2021-01-14T03:17:17Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
Multi-agent settings in the real world often involve tasks with varying types and quantities of agents and non-agent entities.
Our method aims to leverage these commonalities by asking the question: What is the expected utility of each agent when only considering a randomly selected sub-group of its observed entities?''
arXiv Detail & Related papers (2020-06-07T18:28:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.