論文の概要: Deep asymmetric mixture model for unsupervised cell segmentation
- arxiv url: http://arxiv.org/abs/2406.01815v1
- Date: Mon, 3 Jun 2024 22:12:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:42:35.601553
- Title: Deep asymmetric mixture model for unsupervised cell segmentation
- Title(参考訳): 教師なし細胞セグメンテーションのための深部非対称混合モデル
- Authors: Yang Nan, Guang Yang,
- Abstract要約: 本稿では,教師なし細胞分割のための新しい非対称混合モデルを提案する。
これは、ある多変量ガウス混合モデルをログライクリフと自己教師付き最適化関数で集約することによって構築される。
提案した非対称混合モデルは,そのセグメントを含むセルセグメンテーションにおいて,既存の最先端の教師なしモデルよりも優れている。
- 参考スコア(独自算出の注目度): 4.211173851121561
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automated cell segmentation has become increasingly crucial for disease diagnosis and drug discovery, as manual delineation is excessively laborious and subjective. To address this issue with limited manual annotation, researchers have developed semi/unsupervised segmentation approaches. Among these approaches, the Deep Gaussian mixture model plays a vital role due to its capacity to facilitate complex data distributions. However, these models assume that the data follows symmetric normal distributions, which is inapplicable for data that is asymmetrically distributed. These models also obstacles weak generalization capacity and are sensitive to outliers. To address these issues, this paper presents a novel asymmetric mixture model for unsupervised cell segmentation. This asymmetric mixture model is built by aggregating certain multivariate Gaussian mixture models with log-likelihood and self-supervised-based optimization functions. The proposed asymmetric mixture model outperforms (nearly 2-30% gain in dice coefficient, p<0.05) the existing state-of-the-art unsupervised models on cell segmentation including the segment anything.
- Abstract(参考訳): 手指の脱線は過度に退屈で主観的であるため、疾患の診断や薬物発見において、細胞分画の自動化がますます重要になっている。
この問題を解決するために、研究者は半教師なしセグメンテーションアプローチを開発した。
これらのアプローチの中で、ディープガウス混合モデルは、複雑なデータ分散を促進する能力のために重要な役割を果たす。
しかし、これらのモデルは、データが対称正規分布に従うと仮定し、非対称分布のデータには適用できない。
これらのモデルもまた、一般化能力の弱い障害であり、外れ値に敏感である。
これらの問題に対処するために, 教師なし細胞分割のための新しい非対称混合モデルを提案する。
この非対称混合モデルは、ある多変量ガウス混合モデルをログ状および自己教師付き最適化関数で集約することによって構築される。
提案した非対称混合モデルは, セグメントを含むセルセグメンテーションにおける既存の非教師なしモデルよりも優れている(ダイス係数が約2-30%向上, p<0.05)。
関連論文リスト
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
ファジィクラスタリングアルゴリズムは、大まかに2つの主要なグループに分類できる: ファジィC平均法(FCM)と混合モデルに基づく方法。
本稿では,FCMを用いたクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T08:15:50Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
セグメンテーションモデルは敵の摂動に弱いため、医療や自動運転といった重要な意思決定システムでの使用を妨げます。
近年,理論的保証を得るためにガウス雑音を入力に加えることにより,セグメント化予測のランダム化が提案されている。
本稿では,ランダムな平滑化と拡散モデルを組み合わせたセグメンテーション予測の問題に対処する。
論文 参考訳(メタデータ) (2023-06-16T16:30:39Z) - Approximation-Generalization Trade-offs under (Approximate) Group
Equivariance [3.0458514384586395]
グループ同変ニューラルネットワークは、タンパク質や薬物の設計など、様々な分野や応用において印象的な性能を示している。
タスク固有の対称性を捉えるモデルが一般化にどう貢献するかを示す。
モデル対称性がデータ対称性と一致しない場合のモデルミス特定に関するより一般的な問題について検討する。
論文 参考訳(メタデータ) (2023-05-27T22:53:37Z) - Nonlinear Isometric Manifold Learning for Injective Normalizing Flows [58.720142291102135]
アイソメトリーを用いて、多様体学習と密度推定を分離する。
また、確率分布を歪ませない明示的な逆数を持つ埋め込みを設計するためにオートエンコーダを用いる。
論文 参考訳(メタデータ) (2022-03-08T08:57:43Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
本稿では、一般化線形モデルのための新しい非パラメトリック方法論を紹介する。
これは二項回帰の強さとカテゴリーデータに対する潜在変数の定式化の強さを組み合わせたものである。
これは最近公開された方法論のパラメトリックバージョンを拡張し、一般化する。
論文 参考訳(メタデータ) (2021-10-11T04:49:59Z) - Convex Latent Effect Logit Model via Sparse and Low-rank Decomposition [2.1915057426589746]
本稿では,ロジスティック回帰モデル(logit)を学習するための凸パラメトリック凸パラメトリック定式化を提案する。
その人気にもかかわらず、個別の不均一性を学ぶための混合ロジットアプローチにはいくつかの欠点がある。
論文 参考訳(メタデータ) (2021-08-22T22:23:39Z) - Vine copula mixture models and clustering for non-Gaussian data [0.0]
連続データのための新しいブドウパウラ混合モデルを提案する。
本研究では, モデルベースクラスタリングアルゴリズムにおいて, ベインコプラ混合モデルが他のモデルベースクラスタリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-05T16:04:26Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Variational Mixture of Normalizing Flows [0.0]
生成逆数ネットワークオートサイトGAN、変分オートエンコーダオートサイトベイペーパー、およびそれらの変種などの深い生成モデルは、複雑なデータ分布をモデル化するタスクに広く採用されている。
正規化フローはこの制限を克服し、確率密度関数にそのような公式の変更を利用する。
本研究は,混合モデルのコンポーネントとして正規化フローを用い,そのようなモデルのエンドツーエンドトレーニング手順を考案することによって,この問題を克服する。
論文 参考訳(メタデータ) (2020-09-01T17:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。