Non-uniformity is All You Need: Efficient and Timely Encrypted Traffic Classification With ECHO
- URL: http://arxiv.org/abs/2406.01852v3
- Date: Tue, 9 Jul 2024 19:27:34 GMT
- Title: Non-uniformity is All You Need: Efficient and Timely Encrypted Traffic Classification With ECHO
- Authors: Shilo Daum, Tal Shapira, Anat Bremler-Barr, David Hay,
- Abstract summary: This paper introduces ECHO -- a novel optimization process for ML/DL-based encrypted traffic classification.
ECHO targets both classification time and memory utilization and incorporates two innovative techniques.
- Score: 3.9154800026646566
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With 95% of Internet traffic now encrypted, an effective approach to classifying this traffic is crucial for network security and management. This paper introduces ECHO -- a novel optimization process for ML/DL-based encrypted traffic classification. ECHO targets both classification time and memory utilization and incorporates two innovative techniques. The first component, HO (Hyperparameter Optimization of binnings), aims at creating efficient traffic representations. While previous research often uses representations that map packet sizes and packet arrival times to fixed-sized bins, we show that non-uniform binnings are significantly more efficient. These non-uniform binnings are derived by employing a hyperparameter optimization algorithm in the training stage. HO significantly improves accuracy given a required representation size, or, equivalently, achieves comparable accuracy using smaller representations. Then, we introduce EC (Early Classification of traffic), which enables faster classification using a cascade of classifiers adapted for different exit times, where classification is based on the level of confidence. EC reduces the average classification latency by up to 90\%. Remarkably, this method not only maintains classification accuracy but also, in certain cases, improves it. Using three publicly available datasets, we demonstrate that the combined method, Early Classification with Hyperparameter Optimization (ECHO), leads to a significant improvement in classification efficiency.
Related papers
- Towards Hyper-parameter-free Federated Learning [1.3682156035049038]
We introduce algorithms for automated scaling of global model updates.
In first algorithm, we establish that a descent-ensuring step-size regime at the clients ensures descent for the server objective.
Second algorithm shows that the average of objective values of sampled clients is a practical and effective substitute for the value server required for computing the scaling factor.
arXiv Detail & Related papers (2024-08-30T09:35:36Z) - Vaporetto: Efficient Japanese Tokenization Based on Improved Pointwise Linear Classification [2.2125465557153756]
This paper proposes an approach to improve the runtime efficiency of Japanese tokenization based on the pointwise linear classification (PLC) framework.
Our approach optimize tokenization by leveraging the characteristics of the PLC framework and the task definition.
arXiv Detail & Related papers (2024-06-24T23:47:20Z) - Hyperspherical Classification with Dynamic Label-to-Prototype Assignment [5.978350039412277]
We present a simple yet effective method to optimize the category assigned to each prototype during the training.
We solve this optimization using a sequential combination of gradient descent and Bipartide matching.
Our method outperforms its competitors by 1.22% accuracy on CIFAR-100, and 2.15% on ImageNet-200 using a metric space dimension half of the size of its competitors.
arXiv Detail & Related papers (2024-03-25T17:01:34Z) - Dynamic Perceiver for Efficient Visual Recognition [87.08210214417309]
We propose Dynamic Perceiver (Dyn-Perceiver) to decouple the feature extraction procedure and the early classification task.
A feature branch serves to extract image features, while a classification branch processes a latent code assigned for classification tasks.
Early exits are placed exclusively within the classification branch, thus eliminating the need for linear separability in low-level features.
arXiv Detail & Related papers (2023-06-20T03:00:22Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
We propose and investigate several contributions to achieve a parameter-efficient but effective adaptation for semantic segmentation on two medical imaging datasets.
We pre-train this architecture with a dedicated dense self-supervision scheme based on assignments to online generated prototypes.
We demonstrate that the resulting neural network model is able to attenuate the gap between fully fine-tuned and parameter-efficiently adapted models.
arXiv Detail & Related papers (2022-11-16T21:55:05Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
Semi-supervised learning (SSL) has long been proved to be an effective technique to construct powerful models with limited labels.
Regularization-based methods which force the perturbed samples to have similar predictions with the original ones have attracted much attention.
We propose a novel contrastive loss to guide the embedding of the learned network to change linearly between samples.
arXiv Detail & Related papers (2022-02-24T06:00:05Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.