論文の概要: PDHG-Unrolled Learning-to-Optimize Method for Large-Scale Linear Programming
- arxiv url: http://arxiv.org/abs/2406.01908v1
- Date: Tue, 4 Jun 2024 02:39:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 20:13:20.308410
- Title: PDHG-Unrolled Learning-to-Optimize Method for Large-Scale Linear Programming
- Title(参考訳): 大規模線形計画法におけるPDHG-arrolled Learning-to-Optimize法
- Authors: Bingheng Li, Linxin Yang, Yupeng Chen, Senmiao Wang, Qian Chen, Haitao Mao, Yao Ma, Akang Wang, Tian Ding, Jiliang Tang, Ruoyu Sun,
- Abstract要約: 本稿では,大規模線形計画問題の解法として PDHG-Net と呼ばれる FOM-Unrolled Neural Network (NN) を提案する。
提案手法は,大規模LP問題に対するFOMと比較して,最大3ドル以上の高速化を実現することができることを示す。
- 参考スコア(独自算出の注目度): 36.13745722329505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solving large-scale linear programming (LP) problems is an important task in various areas such as communication networks, power systems, finance and logistics. Recently, two distinct approaches have emerged to expedite LP solving: (i) First-order methods (FOMs); (ii) Learning to optimize (L2O). In this work, we propose an FOM-unrolled neural network (NN) called PDHG-Net, and propose a two-stage L2O method to solve large-scale LP problems. The new architecture PDHG-Net is designed by unrolling the recently emerged PDHG method into a neural network, combined with channel-expansion techniques borrowed from graph neural networks. We prove that the proposed PDHG-Net can recover PDHG algorithm, thus can approximate optimal solutions of LP instances with a polynomial number of neurons. We propose a two-stage inference approach: first use PDHG-Net to generate an approximate solution, and then apply PDHG algorithm to further improve the solution. Experiments show that our approach can significantly accelerate LP solving, achieving up to a 3$\times$ speedup compared to FOMs for large-scale LP problems.
- Abstract(参考訳): 大規模線形プログラミング(LP)問題の解決は、通信ネットワーク、電力システム、金融、物流など、様々な分野において重要な課題である。
近年、LP解決を高速化する2つの異なるアプローチが出現している。
(i)一階法(FOMs)
(ii)最適化学習(L2O)。
本研究では、PDHG-Netと呼ばれるFOMアンロールニューラルネットワーク(NN)を提案し、大規模LP問題を解決するための2段階L2O法を提案する。
新しいアーキテクチャであるPDHG-Netは、最近登場したPDHGメソッドをニューラルネットワークにアンロールすることで設計されている。
提案したPDHG-NetはPDHGアルゴリズムを復元できることを示す。
本稿では,まず PDHG-Net を用いて近似解を生成し,次に PDHG アルゴリズムを用いて解をさらに改良する2段階推論手法を提案する。
実験の結果,提案手法は大規模LP問題に対してFOMよりも3$\times$の高速化を実現することができることがわかった。
関連論文リスト
- Learning Optimal Linear Precoding for Cell-Free Massive MIMO with GNN [15.271970287767164]
実用的なシステムで要求される1~2ミリ秒の時間予算で計算できるグラフニューラルネットワーク(GNN)を開発した。
本稿では,AP と UE の数が異なる様々なシナリオにおいて,ほぼ最適なスペクトル効率を実現することを示す。
論文 参考訳(メタデータ) (2024-06-06T19:29:33Z) - PNN: From proximal algorithms to robust unfolded image denoising
networks and Plug-and-Play methods [7.317910352447519]
本稿では,二元FBと二元Chambolle-Pockアルゴリズムの両方に基づいて,ガウス分母タスクのためのPNNを統一的に構築するフレームワークを提案する。
また、これらのアルゴリズムの高速化により、関連するNN層におけるスキップ接続が可能であることを示す。
論文 参考訳(メタデータ) (2023-08-06T15:32:16Z) - Algorithms for Efficiently Learning Low-Rank Neural Networks [12.916132936159713]
低ランクニューラルネットワークの学習アルゴリズムについて検討する。
単層ReLUネットワークに最適な低ランク近似を学習するアルゴリズムを提案する。
低ランク$textitdeep$ネットワークをトレーニングするための新しい低ランクフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-02T01:08:29Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
グラフ信号処理は、センサー、社会交通脳ネットワーク、ポイントクラウド処理、グラフネットワークなど、多くのアプリケーションにおいてユビキタスなタスクである。
凸非依存型深部ADMM(ADMM)に基づく2つの復元手法を提案する。
提案手法のパラメータはエンドツーエンドでトレーニング可能である。
論文 参考訳(メタデータ) (2021-06-30T08:57:01Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Partitioning sparse deep neural networks for scalable training and
inference [8.282177703075453]
最先端のディープニューラルネットワーク(DNN)には、計算とデータ管理の大幅な要件がある。
スパシフィケーション法とプルーニング法は,DNNの大量の接続を除去するのに有効であることが示されている。
その結果得られたスパースネットワークは、ディープラーニングにおけるトレーニングと推論の計算効率をさらに向上するためのユニークな課題を提示する。
論文 参考訳(メタデータ) (2021-04-23T20:05:52Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
本稿では,学習ニューラルの強みと動的プログラミングアルゴリズムの強みを組み合わせた深層ポリシー動的プログラミング(d pdp)を提案する。
D PDPは、例の解からエッジを予測するために訓練されたディープニューラルネットワークから派生したポリシーを使用して、DP状態空間を優先し、制限する。
本研究では,旅行セールスマン問題 (TSP) と車両ルーティング問題 (VRP) の枠組みを評価し,ニューラルネットワークが(制限された)DPアルゴリズムの性能を向上させることを示す。
論文 参考訳(メタデータ) (2021-02-23T15:33:57Z) - Deep Reinforcement Learning for Field Development Optimization [0.0]
本研究の目的は,畳み込みニューラルネットワーク(CNN)深部強化学習(DRL)アルゴリズムをフィールド開発最適化問題に適用することである。
近似ポリシー最適化 (PPO) アルゴリズムは2つのCNNアーキテクチャで様々な層と構成を持つ。
両ネットワークは、ハイブリッド粒子群最適化(PSO-MADS)アルゴリズムと比較して満足な結果をもたらすポリシーを得た。
論文 参考訳(メタデータ) (2020-08-05T06:26:13Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。