論文の概要: Analyzing Social Biases in Japanese Large Language Models
- arxiv url: http://arxiv.org/abs/2406.02050v3
- Date: Mon, 21 Oct 2024 06:33:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:13:42.583114
- Title: Analyzing Social Biases in Japanese Large Language Models
- Title(参考訳): 日本語大言語モデルにおける社会的バイアスの分析
- Authors: Hitomi Yanaka, Namgi Han, Ryoma Kumon, Jie Lu, Masashi Takeshita, Ryo Sekizawa, Taisei Kato, Hiromi Arai,
- Abstract要約: 本稿では,英語バイアスベンチマークBBQに基づいて,質問回答のための日本語バイアスベンチマークデータセット(JBBQ)を構築した。
日本語大言語モデル(LLM)における社会的バイアスの分析
社会的バイアスに関する警告と、モデルアウトプットにおけるバイアスの影響を減らそうとするChain-of-Thought。
- 参考スコア(独自算出の注目度): 24.351580958043595
- License:
- Abstract: With the development of Large Language Models (LLMs), social biases in the LLMs have become a crucial issue. While various benchmarks for social biases have been provided across languages, the extent to which Japanese LLMs exhibit social biases has not been fully investigated. In this study, we construct the Japanese Bias Benchmark dataset for Question Answering (JBBQ) based on the English bias benchmark BBQ, and analyze social biases in Japanese LLMs. The results show that while current open Japanese LLMs improve their accuracies on JBBQ by setting larger parameters, their bias scores become larger. In addition, prompts with warnings about social biases and Chain-of-Thought prompting reduce the effect of biases in model outputs, but there is room for improvement in the consistency of reasoning.
- Abstract(参考訳): LLM(Large Language Models)の発展に伴い、LLMの社会的偏見は重要な問題となっている。
言語によって様々な社会的バイアスのベンチマークが提供されているが、日本人のLLMが社会的バイアスを示す程度については、十分に調査されていない。
本研究では、英語バイアスベンチマークBBQに基づいて日本語バイアスベンチマーク(JBBQ)を構築し、日本語LLMにおける社会的バイアスを分析する。
その結果,現在の日本語LLMでは,より大きいパラメータを設定することでJBBQの精度が向上する一方,バイアススコアは大きくなることがわかった。
さらに、社会的偏見に対する警告や、モデルアウトプットにおける偏見の影響を減らそうとしているが、推論の整合性を改善する余地がある。
関連論文リスト
- A Novel Interpretability Metric for Explaining Bias in Language Models: Applications on Multilingual Models from Southeast Asia [0.3376269351435396]
事前学習言語モデル(PLM)におけるバイアス行動に対するトークンレベルの寄与を測定するための新しい指標を提案する。
東南アジアのPLMにおいて性差別と同性愛バイアスの存在が確認された。
解釈可能性と意味分析は、PLMバイアスが犯罪、親密な関係、助けに関する言葉によって強く引き起こされることを示している。
論文 参考訳(メタデータ) (2024-10-20T18:31:05Z) - Social Debiasing for Fair Multi-modal LLMs [55.8071045346024]
MLLM(Multi-modal Large Language Models)は、強力な視覚言語理解機能を提供する。
しかしながら、これらのモデルはトレーニングデータセットから深刻な社会的偏見を継承することが多く、人種や性別といった属性に基づいた不公平な予測につながります。
本稿では,MLLMにおける社会的バイアスの問題に対処する。i)多元的社会的概念(CMSC)を用いた包括的対実的データセットの導入,i)アンチステレオタイプデバイアス戦略(ASD)を提案する。
論文 参考訳(メタデータ) (2024-08-13T02:08:32Z) - BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization [0.0]
大規模言語モデル(LLM)は、自然言語処理の進歩において重要な役割を担っているが、バイアスの持続可能性には重大な懸念がある。
本稿では、英語テキストにおけるジェンダー、人種、宗教的偏見を緩和するために、DPO(Direct Preference Optimization)を用いた新しい枠組みを提案する。
バイアスのある完了よりもバイアスの少ない損失関数を開発することで、我々のアプローチは敬意と非差別的な言語を好む。
論文 参考訳(メタデータ) (2024-07-18T22:32:20Z) - Social Bias Evaluation for Large Language Models Requires Prompt Variations [38.91306092184724]
大規模言語モデル(LLM)は、かなりの社会的偏見を示す。
本稿では,高速変動変化におけるLDMの感度について検討する。
LLMは、そのプロンプトによって引き起こされる社会的偏見と性能のトレードオフがあることが示される。
論文 参考訳(メタデータ) (2024-07-03T14:12:04Z) - VLBiasBench: A Comprehensive Benchmark for Evaluating Bias in Large Vision-Language Model [72.13121434085116]
VLBiasBenchは、LVLM(Large Vision-Language Models)におけるバイアスの評価を目的としたベンチマークである。
我々は、年齢、障害状態、性別、国籍、身体的外観、人種、宗教、職業、社会的経済状態、および2つの交叉バイアスカテゴリー(人種x性、人種x社会経済状態)を含む9つの異なる社会バイアスカテゴリーを含むデータセットを構築した。
15のオープンソースモデルと1つの高度なクローズドソースモデルに対して広範な評価を行い、これらのモデルから明らかになったバイアスに関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2024-06-20T10:56:59Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Investigating Subtler Biases in LLMs: Ageism, Beauty, Institutional, and Nationality Bias in Generative Models [0.0]
本稿では, 年齢や美しさなど, 研究の少ない, 連続的な, 次元に沿ったバイアスについて検討する。
実験心理学において, LLMは, 特定の社会集団に対して, 肯定的, 否定的感情の偏見を広く抱いているか, あるいは「美しいものは良い」バイアスと類似しているかを問う。
論文 参考訳(メタデータ) (2023-09-16T07:07:04Z) - The Tail Wagging the Dog: Dataset Construction Biases of Social Bias
Benchmarks [75.58692290694452]
社会的偏見と、データセット構築時に選択された選択から生じる非社会的偏見を比較し、人間の目では識別できないかもしれない。
これらの浅い修正は、様々なモデルにまたがるバイアスの程度に驚くべき影響を及ぼす。
論文 参考訳(メタデータ) (2022-10-18T17:58:39Z) - BERTScore is Unfair: On Social Bias in Language Model-Based Metrics for
Text Generation [89.41378346080603]
この研究は、PLMに基づくメトリクスにおける社会バイアスに関する最初の体系的研究である。
PLMをベースとした一般的な指標は,従来の6つの属性の指標よりも社会的偏見が著しく高いことが実証された。
さらに, PLM層に注入される脱バイアスアダプタを開発し, テキスト生成の評価に高い性能を維持しながら, PLMベースのメトリクスのバイアスを軽減する。
論文 参考訳(メタデータ) (2022-10-14T08:24:11Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。