論文の概要: CityLight: A Universal Model for Coordinated Traffic Signal Control in City-scale Heterogeneous Intersections
- arxiv url: http://arxiv.org/abs/2406.02126v3
- Date: Thu, 29 Aug 2024 02:00:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-30 18:57:30.955159
- Title: CityLight: A Universal Model for Coordinated Traffic Signal Control in City-scale Heterogeneous Intersections
- Title(参考訳): CityLight: 都市規模の異種交差点における協調交通信号制御のユニバーサルモデル
- Authors: Jinwei Zeng, Chao Yu, Xinyi Yang, Wenxuan Ao, Qianyue Hao, Jian Yuan, Yong Li, Yu Wang, Huazhong Yang,
- Abstract要約: CityLightは、交差点の状態表現を整列し、狭い相対的な交通関係型を符号化して、近隣の交差点を均一な相対的な交通影響空間に投影する普遍的な表現モジュールである。
数百から数万の交差点での実験では、CityLightの驚くべき有効性と一般化性が確認され、全体的なパフォーマンスは11.68%、スループットにおける転送シナリオは22.59%向上した。
- 参考スコア(独自算出の注目度): 23.5766158697276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasingly severe congestion problem in modern cities strengthens the significance of developing city-scale traffic signal control (TSC) methods for traffic efficiency enhancement. While reinforcement learning has been widely explored in TSC, most of them still target small-scale optimization and cannot directly scale to the city level due to unbearable resource demand. Only a few of them manage to tackle city-level optimization, namely a thousand-scale optimization, by incorporating parameter-sharing mechanisms, but hardly have they fully tackled the heterogeneity of intersections and intricate between-intersection interactions inherent in real-world city road networks. To fill in the gap, we target at the two important challenges in adopting parameter-sharing paradigms to solve TSC: inconsistency of inner state representations for intersections heterogeneous in configuration, scale, and orders of available traffic phases; intricacy of impacts from neighborhood intersections that have various relative traffic relationships due to inconsistent phase orders and diverse relative positioning. Our method, CityLight, features a universal representation module that not only aligns the state representations of intersections by reindexing their phases based on their semantics and designing heterogeneity-preserving observations, but also encodes the narrowed relative traffic relation types to project the neighborhood intersections onto a uniform relative traffic impact space. We further attentively fuse neighborhood representations based on their competing relations and incorporate neighborhood-integrated rewards to boost coordination. Extensive experiments with hundreds to tens of thousands of intersections validate the surprising effectiveness and generalizability of CityLight, with an overall performance gain of 11.68% and a 22.59% improvement in transfer scenarios in throughput.
- Abstract(参考訳): 近代都市における混雑問題の増加により、交通効率向上のための都市規模の交通信号制御(TSC)手法の開発の重要性が高まっている。
TSCでは強化学習が広く研究されているが、その多くがまだ小規模の最適化を目標としており、資源需要の難しさから都市レベルへの直接的拡大はできない。
パラメータ共有機構を導入することで、都市レベルの最適化、すなわち1000スケールの最適化に取り組むことができるのはごくわずかだが、実際の都市道路網に固有の交差点の不均一性や複雑な交差点間相互作用に完全に取り組むことはほとんどない。
このギャップを埋めるために、パラメータ共有パラダイムを採用する際の2つの重要な課題として、コンフィグレーションやスケール、利用可能なトラフィックフェーズのヘテロジニアスな交差点の内的状態表現の不整合、不整合相秩序と多様な相対的位置決めによる様々な相対的トラフィック関係を持つ近隣交差点からの影響の複雑化、などがあげられる。
提案手法であるCityLightは, 共通表現モジュールを特徴とし, 相のセマンティクスに基づいて位相を再現し, 異種性保存観測を設計するとともに, 近傍の交差点を均一な相対的交通影響空間に投影するために, 狭義の相対的交通関係型を符号化する。
我々はさらに、その競合関係に基づいて近隣の表現をさらに融合させ、調整を促進するために近隣統合報酬を取り入れた。
数百から数万の交差点による大規模な実験により、CityLightの驚くべき有効性と一般化性が確認され、全体的なパフォーマンスは11.68%、スループットにおける転送シナリオは22.59%向上した。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - UniTSA: A Universal Reinforcement Learning Framework for V2X Traffic
Signal Control [4.505547437110232]
交通渋滞は、効果的な交通信号制御(TSC)システムの開発を要求する都市部において持続的な問題である。
そこで本研究では,V2X(Vanger-to-Everything)環境での汎用的なRTLベースのTSCフレームワークを提案する。
様々な交差構造を扱う能力の向上を図ったRLベースのフレームワークを実現するため,信号光制御システムのための新しいトラフィック状態拡張手法が開発された。
論文 参考訳(メタデータ) (2023-12-08T15:18:40Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - SocialLight: Distributed Cooperation Learning towards Network-Wide
Traffic Signal Control [7.387226437589183]
SocialLightは交通信号制御のための新しいマルチエージェント強化学習手法である。
地元におけるエージェントの個人的限界貢献を推定することにより、協力的な交通規制政策を学習する。
我々は,2つの交通シミュレータの標準ベンチマークにおける最先端の交通信号制御手法に対して,トレーニングネットワークをベンチマークした。
論文 参考訳(メタデータ) (2023-04-20T12:41:25Z) - RLPG: Reinforcement Learning Approach for Dynamic Intra-Platoon Gap
Adaptation for Highway On-Ramp Merging [14.540226579203207]
小隊は、非常に近い距離で一緒に移動する車両のグループを指す。
近年の研究では、高規格道路と高架道路の合流時の交通流に対する極小小小高架区間の影響が明らかにされている。
本稿では,各小隊員の小隊内ギャップを適応的に調整し,交通流を最大化する新しい補強学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-07T07:33:54Z) - Real-time Cooperative Vehicle Coordination at Unsignalized Road
Intersections [7.860567520771493]
信号のない道路交差点での協調作業は、連結車両と自動車両の安全運転交通スループットを向上させることを目的としている。
我々はモデルフリーなマルコフ決定プロセス(MDP)を導入し、深層強化学習フレームワークにおける双遅延Deep Deterministic Policy(TD3)に基づく戦略によりそれに取り組む。
提案手法は, 準定常調整シナリオにおいて, ほぼ最適性能を達成し, 現実的な連続流れの制御を大幅に改善できることが示唆された。
論文 参考訳(メタデータ) (2022-05-03T02:56:02Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
本稿では,混在交通流を伴う複雑な交差点を扱うための学習に基づくアルゴリズムを提案する。
まず、学習過程における緑と赤の異なる速度モデルについて検討し、有限状態マシンを用いて異なるモードの光変換を扱う。
次に, 車両, 信号機, 歩行者, 自転車にそれぞれ異なる種類の距離制約を設計し, 制約された最適制御問題をフォーミュレートする。
論文 参考訳(メタデータ) (2021-08-30T07:55:32Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。