Steady-State Entanglement Generation via Casimir-Polder Interactions
- URL: http://arxiv.org/abs/2406.02270v3
- Date: Fri, 04 Apr 2025 00:54:38 GMT
- Title: Steady-State Entanglement Generation via Casimir-Polder Interactions
- Authors: Mohsen Izadyari, Onur Pusuluk, Kanu Sinha, Özgür E. Müstecaplıoğlu,
- Abstract summary: We investigate the generation of steady-state entanglement between two atoms resulting from the fluctuation-mediated Casimir-Polder interactions near a surface.<n> perfectly conducting and superconducting surfaces yield an optimal steady-state concurrence value of approximately 0.5.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the generation of steady-state entanglement between two atoms resulting from the fluctuation-mediated Casimir-Polder (CP) interactions near a surface. Starting with an initially separable state of the atoms, we analyze the atom-atom entanglement dynamics for atoms placed at distances in the range of $\sim25$ nm away from a planar medium, examining the effect of medium properties and geometrical configuration of the atomic dipoles. We show that perfectly conducting and superconducting surfaces yield an optimal steady-state concurrence value of approximately 0.5. Furthermore, although the generated entanglement decreases with medium losses for a metal surface, we identify an optimal distance from the metal surface that assists in entanglement generation by the surface. While fluctuation-mediated interactions are typically considered detrimental to the coherence of quantum systems at nanoscales, our results demonstrate a mechanism for leveraging such interactions for entanglement generation.
Related papers
- Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Entanglement dynamics of Multi-Level Atoms embedded in Photonic Crystals: Leveraging Resonant Dipole Interactions and Quantum Interference [0.0]
Investigation of entanglement dynamics in multi-level V-type atomic systems embedded within PC cavities.<n>Key findings reveal that resonant interaction dominates when interatomic distances align with the localization length of photon-atom bound states lying in the bandgap region.<n>Our analysis establishes RDDI and quantum interference as potential tools for controlling entanglement lifetimes in photonic crystal environments.
arXiv Detail & Related papers (2025-05-24T18:15:03Z) - Photon-Mediated Atomic Interactions in Curved Surface Settings [0.0]
Subwavelength atomic lattices have emerged as a promising platform for quantum applications.
We show how the curvature and the thickness of the waveguides affects the collective states through an effective surface wavelength.
arXiv Detail & Related papers (2025-03-25T13:23:36Z) - Cavity-assisted quantum transduction between superconducting qubits and trapped atomic particles mediated by Rydberg levels [49.1574468325115]
We present an approach for transferring quantum states from superconducting qubits to the internal states of trapped atoms or ions.
For experimentally demonstrated parameters of interaction strengths, dissipation, and dephasing, our scheme achieves fidelities above 95%.
arXiv Detail & Related papers (2025-01-06T18:28:18Z) - Dynamical Screening of Local Spin Moments at Metal-Molecule Interfaces [0.0]
We show that the orbital-dependent hybridization and electron correlation together result in strong charge and spin fluctuations.
Our results highlight the importance of quantum fluctuations in metal-contacted molecular devices.
arXiv Detail & Related papers (2024-12-18T17:23:38Z) - Electron-Electron Interactions in Device Simulation via Non-equilibrium Green's Functions and the GW Approximation [71.63026504030766]
electron-electron (e-e) interactions must be explicitly incorporated in quantum transport simulation.
This study is the first one reporting large-scale atomistic quantum transport simulations of nano-devices under non-equilibrium conditions.
arXiv Detail & Related papers (2024-12-17T15:05:33Z) - Long-range interactions in Weyl dense atomic arrays protected from dissipation and disorder [41.94295877935867]
Long-range interactions are a key resource in many quantum phenomena and technologies.
We show how to design the polaritonic bands of these atomic metamaterials to feature a pair of frequency-isolated Weyl points.
These Weyl excitations can thus mediate interactions that are simultaneously long-range, due to their gapless nature; robust, due to the topological protection of Weyl points; and decoherence-free, due to their subradiant character.
arXiv Detail & Related papers (2024-06-18T20:15:16Z) - Effects of higher-order Casimir-Polder interactions on Rydberg atom spectroscopy [0.0]
We calculate the higher-order, quadrupole and octupole, contributions to Casimir-Polder energy shifts.
This new regime of extremely small atom surface separations is relevant for quantum technology applications with Rydberg or surface-bound atoms.
arXiv Detail & Related papers (2024-04-20T11:29:38Z) - Casimir repulsion with biased semiconductors [1.8273673942018027]
We explore systems involving moderately biased semiconductors that exhibit strong repulsive Casimir forces.
Modes emitted from the semiconductors exert a repulsive force on a near surface that overcomes the attractive equilibrium Casimir force contribution at submicron distances.
Our work opens up new possibilities of controlling forces at the nano- and micrometer scale with applications in sensing and actuation in nanotechnology.
arXiv Detail & Related papers (2024-03-14T00:04:13Z) - Manipulating the Dipolar Interactions and Cooperative Effects in
Confined Geometries [0.0]
One promising strategy involves integrating thermal vapors with nanostructures designed to manipulate atomic interactions.
We explore the interactions between atoms in confined dense thermal vapors.
By carefully controlling the saturation of single atoms and the interactions among multiple atoms using nanostructures, it becomes possible to manipulate the effective optical nonlinearity of the entire atomic ensemble.
arXiv Detail & Related papers (2024-01-16T21:10:03Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Effect of the Atomic Dipole-Dipole Interaction on the Phase Diagrams of
Field-Matter Interactions I: Variational procedure [0.0]
We establish, within the second quantization method, the general dipole-dipole Hamiltonian interaction of a system of $n$-level atoms.
We find the quantum phase transitions for $2$- and $3$-level atomic systems interacting with $1$- and $2$- modes of the electromagnetic field, respectively.
arXiv Detail & Related papers (2021-10-22T01:55:07Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.